an Base and Prime Editing Reduce the Cancer Risk Linked to Conventional CRISPR?” of master’s level

Topic Outline Assessment Task 2A

What is the topic? CRISPR.

What is the focus? The balance between the benefit of reduced off-target sites that minimise the cancer risk associated with conventional CRISPR and the generation of bystander mutations.

What is the controversy? The uncertainty surrounding whether the benefits of reduced off-target sites offered by the base and prime editors outweigh the concerns related to the notable generation of bystander mutations.

What is the title? Can Base and Prime Editing Reduce the Cancer Risk Linked to Conventional CRISPR?

 

Can Base and Prime Editing Reduce the Cancer Risk Linked to Conventional CRISPR? 

Abstract (250 words, 1 paragraph)

  • Description of the controversy – uncertainty on whether the benefits of reduced off-target sites offered by the base and prime editors outweigh the concerns related to the notable generation of bystander mutations.
  • The aim of the review – to critically analyse the balance between the benefit of reduced off-target sites and the risk associated with the generation of bystander mutations.
  • Key findings and insights of the review.
  • Overall conclusion
  1. Introduction
  • An overview of CRISPR gene-editing technology, its impact on gene therapy, and the introduction to the cancer risk associated with off-target sites of conventional techniques.
  • Introduction to the newer base and prime editing techniques of CRISPR and their potential benefits, particularly their promise of reducing off-target sites.
  • State the controversy and focus of the critical review: uncertainty regarding whether the benefits of reduced off-target sites outweigh concerns about bystander mutations.
  • State the aim and scope of the critical review: to critically analyse the balance between the benefit of reduced off-target sites and the risk associated with bystander mutations and highlight the issue’s significance in the context of CRISPR applications and their potential impact on human health.
  1. CRISPR Gene-Editing Technology
  • Mechanism of conventional CRISPR gene editing.
  • Disadvantages of using conventional CRISPR editing tools with a primary focus on its off-target effects associated with cancer.
  • Challenges in the management of off-target effects
  • Discuss relevant literature.
  1. Base and Prime Editing CRISPR Technique

3.1 Base Editing

  • Explain the base editing process and its differences from conventional CRISPR.
  • Present evidence supporting its effectiveness in reducing off-target sites.
  • Discuss concerns related to the generation of bystander mutations.
  • Evaluate concerns related to the generation of bystander mutations with relevant studies and findings.

3.2 Prime Editing

  • How it works and how it is different from conventional CRISPR techniques.
  • How it can overcome off-target effects.
  • Evaluate concerns related to the generation of bystander mutations with relevant studies and findings.

3.3 Uncertainty in Base and Prime Editing

  • Summarise findings from the critical analysis.
  • Address any gaps in current knowledge or areas.
  • Explore the implications of uncertainty on the overall balance between benefits and risks.
  1. Conclusion (1 paragraph)
  • Restate the aim and controversy.
  • Summarise key findings, insights and any conclusions made.
  • Suggestions to future research directions regarding limitations and inconsistencies across studies.
  1. References

Anzalone, A. V., Koblan, L. W., & Liu, D. R. (2020). Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology38(7), 824–844. https://doi.org/10.1038/s41587-020-0561-9

Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., & Liu, D. R. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature576(576). https://doi.org/10.1038/s41586-019-1711-4

Caso, F., & Davies, B. (2021). Base editing and prime editing in laboratory animals. Laboratory Animals, 002367722199389. https://doi.org/10.1177/0023677221993895

Cromer, M. K., Majeti, K. R., Rettig, G. R., Murugan, K., Kurgan, G. L., Bode, N. M., Hampton, J. P., Vakulskas, C. A., Behlke, M. A., & Porteus, M. H. (2023). Comparative analysis of CRISPR off-target discovery tools following ex vivo editing of CD34+ hematopoietic stem and progenitor cells. Molecular Therapy31(4), 1074–1087. https://doi.org/10.1016/j.ymthe.2023.02.011

Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature551(7681), 464–471. https://doi.org/10.1038/nature24644

Guo, C., Ma, X., Gao, F., & Guo, Y. (2023). Off-target effects in CRISPR/Cas9 gene editing. Frontiers in Bioengineering and Biotechnology11(1143157). https://doi.org/10.3389/fbioe.2023.1143157

Jiang, Y.-Y., Chai, Y.-P., Lu, M.-H., Han, X.-L., Lin, Q., Zhang, Y., Zhang, Q., Zhou, Y., Wang, X.-C., Gao, C., & Chen, Q.-J. (2020). Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biology21(1). https://doi.org/10.1186/s13059-020-02170-5

Jin, S., Fei, H., Zhu, Z., Luo, Y., Liu, J., Gao, S., Zhang, F., Yu Hang Chen, Wang, Y., & Gao, C. (2020). Rationally designed APOBEC3B cytosine base editors with improved specificity. Molecular Cell79(5), 728-740.e6. https://doi.org/10.1016/j.molcel.2020.07.005

Jin, S., Zong, Y., Gao, Q., Zhu, Z., Wang, Y., Qin, P., Liang, C., Wang, D., Qiu, J.-L., Zhang, F., & Gao, C. (2019). Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science364(6437), 292–295. https://doi.org/10.1126/science.aaw7166

Kantor, A., McClements, M. E., & MacLaren, R. E. (2020). CRISPR-Cas9 DNA base-editing and prime-editing. International Journal of Molecular Sciences21(17), 6240. https://doi.org/10.3390/ijms21176240

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature533(7603), 420–424. https://doi.org/10.1038/nature17946

Kwon, J., Kim, M., Hwang, W., Jo, A., Hwang, G., Jung, M., Un Gi Kim, Cui, G., Kim, H., Eom, J.-H., Hur, J. K., Lee, J., Kim, Y., Kim, J.-S., Bae, S., & Lee, J. K. (2023). Extru-seq: a method for predicting genome-wide Cas9 off-target sites with advantages of both cell-based and in vitro approaches. Genome Biology24(1). https://doi.org/10.1186/s13059-022-02842-4

Lei, Z., Meng, H., Lv, Z., Liu, M., Zhao, H., Wu, H., Zhang, X., Liu, L., Zhuang, Y., Yin, K., Yan, Y., & Yi, C. (2021). Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Nature Methods18(6), 643–651. https://doi.org/10.1038/s41592-021-01172-w

Naeem, M., Majeed, S., Hoque, M. Z., & Ahmad, I. (2020). Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells9(7), 1608. https://doi.org/10.3390/cells9071608

Pacesa, M., Lin, C.-H., Cléry, A., Saha, A., Arantes, P. R., Bargsten, K., Irby, M. J., Allain, F. H.-T. ., Palermo, G., Cameron, P., Donohoue, P. D., & Jinek, M. (2022). Structural basis for Cas9 off-target activity. Cell185(22), 4067-4081.e21. https://doi.org/10.1016/j.cell.2022.09.026

Pan, X., Qu, K., Yuan, H., Xiang, X., Anthon, C., Liubov Pashkova, Liang, X., Han, P., Corsi, G. I., Xu, F., Liu, P., Zhong, J., Zhou, Y., Ma, T., Jiang, H., Liu, J., Wang, J., Jessen, N., Lars Bolund, & Yang, H. (2022). Massively targeted evaluation of therapeutic CRISPR off-targets in cells. Nature Communications13(1). https://doi.org/10.1038/s41467-022-31543-6

Richter, M. F., Zhao, K. T., Eton, E., Lapinaite, A., Newby, G. A., Thuronyi, B. W., Wilson, C., Koblan, L. W., Zeng, J., Bauer, D. E., Doudna, J. A., & Liu, D. R. (2020). Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature Biotechnology38(7), 883–891. https://doi.org/10.1038/s41587-020-0453-z

Taha, E. A., Lee, J., & Hotta, A. (2022). Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. Journal of Controlled Release342, 345–361. https://doi.org/10.1016/j.jconrel.2022.01.013

Tran, N. T., Danner, E., Li, X., Graf, R., Lebedin, M., de la Rosa, K., Kühn, R., Rajewsky, K., & Chu, V. T. (2022). Precise CRISPR-Cas–mediated gene repair with minimal off-target and unintended on-target mutations in human hematopoietic stem cells. Science Advances8(22). https://doi.org/10.1126/sciadv.abm9106

Wu, Y., Ren, Q., Zhong, Z., Liu, G., Han, Y., Bao, Y., Liu, L., Xiang, S., Liu, S., Tang, X., Zhou, J., Zheng, X., Sretenovic, S., Zhang, T., Qi, Y., & Zhang, Y. (2022). Genome‐wide analyses of PAM‐relaxed Cas9 genome editors reveal substantial off‐target effects by ABE8e in rice. Plant Biotechnology Journal20(9), 1670–1682. https://doi.org/10.1111/pbi.13838

Zhang, D., Zhang, Z., Unver, T., & Zhang, B. (2020). CRISPR/Cas: a powerful tool for gene function study and crop improvement. Journal of Advanced Research29. https://doi.org/10.1016/j.jare.2020.10.003

Zhou, C., Sun, Y., Yan, R., Liu, Y., Zuo, E., Gu, C., Han, L., Wei, Y., Hu, X., Zeng, R., Li, Y., Zhou, H., Guo, F., & Yang, H. (2019). Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature571(7764), 275–278. https://doi.org/10.1038/s41586-019-1314-0