[image: ]



IMPLEMENTATION OF A DNS INFRASTRUCTURE (BIND9) AND WEB SERVER FARM FACILITY FOR A LARGE SCALE ORGANIZATION. (APACHE, PHP, NFS, AND MYSQL)



[bookmark: _GoBack]By Student’s  Name
ID
Course Name
KF5004 
Advanced OS I
Dr. M. Fatih Tuysuz
Submission Date






Word Count




Section 1: DNS Deployment (40 Marks)     
1(a)
Step-by-Step DNS Setup and Configuration: 
· Primary DNS Server 1 (192.168.101.28): 
· Network Configuration 
 (/etc/netplan/10-cloud-init.yaml): 
· IP Address: 192.168.101.28/16 
· Gateway: 192.168.100.254 
· Nameservers: [8.8.8.8, 8.8.4.4] (Google DNS) 
· Bind Configuration 
 (/etc/bind/named.conf.local): 
· Zones: "unn.co.uk," "tech.co.uk," "staff.unn.co.uk," and reverse lookup "168.192.in-addr.arpa." 
· Type: Master for "unn.co.uk" and "tech.co.uk," Slave for "staff.unn.co.uk" (synchronized from Secondary servers). 
· Bind Options 
Use  (/etc/bind/named.conf.options): 
· DNSSEC validation enabled. 
· Directory: "/var/cache/bind." 
· Primary DNS Server 2 (192.168.101.27): 
· Follow the same steps as Primary DNS Server 1. 
· Secondary DNS Servers (192.168.101.29, 192.168.101.30): 
· Network Configuration  
Use (/etc/netplan/10-cloud-init.yaml): 
· Bind Configuration : 
Use (/etc/bind/named.conf.options) 
· Configure as slaves for "unn.co.uk," "tech.co.uk," "staff.unn.co.uk," and reverse lookup "168.192.inaddr.arpa." 
· The IP addresses of the masters are given:  (192.168.101.28). 
Zone Distribution: 
· Primary Servers (1 and 2): 
· Responsible for authoritative data. 
· Zones "unn.co.uk" and "tech.co.uk" are primary. 
· Zone "staff.unn.co.uk" is a slave, synchronized from secondary servers. 
· Secondary Servers (1 and 2): 
· Act as backup for the primary servers. 
· Slave zones for "unn.co.uk" and "tech.co.uk," synchronized from primary servers. 
· Zone "staff.unn.co.uk" is not modified but can respond to queries. 
· Subdomains: 
· Zone files specify subdomains such as "web," "www," "ftp," and so on.. 
Important Note: 
· Ensure that firewalls are configured to allow DNS traffic. 
· Regularly monitor DNS logs for errors or unauthorized queries. (Microsoft, 2020)
 
SERVER CONFIGURATIONS  
Primary DNS Server 1 (192.168.101.28): 
· Network Configuration  
(/etc/netplan/10-cloud-init.yaml): 
 
[image: ] 
Bind Configuration  
(/etc/bind/named.conf.local): 
[image: ] 
Bind Options 
 (/etc/bind/named.conf.options): 
[image: ] 
Zone File 
 (/etc/bind/db.unn.co.uk): 
[image: ] 
· Secondary DNS Server 1 (192.168.101.29): 
Network Configuration (/etc/netplan/10-cloud-init.yaml) 
Bind Configuration (/etc/bind/named.conf.local): 
[image: ] 
 
· Primary Server 2 (192.168.101.27): 
· Network Configuration (/etc/netplan/10-cloud-init.yaml): 
[image: ] 
· Bind Configuration (/etc/bind/named.conf.local): 
[image: ] 
· Bind Options (/etc/bind/named.conf.options): 
[image: ] 
· Zone File (/etc/bind/db.staff.unn.co.uk): 
[image: ] 
· Secondary Server 2 (192.168.101.30): 
· Network Configuration (/etc/netplan/10-cloud-init.yaml): 
[image: ] 
· Bind Configuration (/etc/bind/named.conf.local): 
[image: ] 
· Bind Options (/etc/bind/named.conf.options): 
[image: ] 
 
· Primary Server 1 (Master) 
/etc/netplan/10-cloud-init.yaml 
[image: ] 
/etc/bind/named.conf.local 
[image: ] 
 
/etc/bind/named.conf.options 
[image: ] 
 
 
 
/etc/bind/db.staff.unn.co.uk 
[image: ] 
 
· Secondary Server 1 
/etc/netplan/10-cloud-init.yaml 
[image: ] 
/etc/bind/named.conf.options 
[image: ]
 
/etc/bind/named.conf.local 
[image: ] 
· Secondary Server 2 
/etc/netplan/10-cloud-init.yaml 
[image: ] 
 
/etc/bind/named.conf.options 
[image: ] 
/etc/bind/named.conf.local 
[image: ] 
 
 
 

 
 
Main Configurations 
· Primary DNS Server (Master Server 1) 
File: /etc/bind/named.conf.local 
[image: ] 
 
· Secondary DNS Server 1 
File: /etc/bind/named.conf.local 
[image: ]  
· Primary DNS Server (Master Server 2) 
File: /etc/bind/named.conf.local 
[image: ] 
 
· Secondary DNS Server 2 
File: /etc/bind/named.conf.local 
(Microsoft, n.d.)
[image: ] 
 
1(b) 
1. Unauthorized Access to Zone Data: 
· Explanation:  In case of inappropriate limitations DNS server may get complete copy of zone data. 
· Impact: Important DNS data can be obtained using unauthorized access by the attackers. 
2. Zone Poisoning and Data Manipulation: 
· Explanation: It is risky using unrestricted zone transfers. 
· Impact: Data integrity can be breached using unrestricted zone transfers. 
3. Amplification Attacks: 
· Explanation: DNS amplification attacks can be done using unrestricted zones large responses for a small request. 
· Impact: This can effect overall network performance. 
4. Resource Utilization: 
· Explanation: Demand and resource utilization increases using uncontrolled zone transmissions. 
· Impact: Network performance is effected by excessive bandwidth. 
5. Denial-of-Service (DoS) Attacks: 
· Explanation: Attackers can make primary server run out of resources by flooding it with zone transfer requests. 
· Impact: Resource depletion can deny the DNS service. 
6. Increased Attack Surface: 
· Explanation: Information of DNS system can be public using unrestricted transfers. 
· Impact: Security of the server can be breached using the knowledge gained. 
7. Failure Compliance Best Practices: 
· Explanation: Zone transfers must be prohibited for best security practice. 
· Impact: Chances for attacks might increase if security requirements remain unfulfilled.

2(a)
1. Primary NS (Name Server): 
· Description: Specifies the primary authoritative DNS server for the zone. This is the server where updates to the zone are made. 
· Example: ns1.unn.co.uk. 
2. Responsible Person's Email: 
· Description: Gives the domain administrator's email address who is in charge of the zone. The email address now has a period in lieu of the "@" sign. 
· Example: admin.unn.co.uk. 
3. Serial Number: 
· Description: The serial number corresponds to the zone's version number. It increases each time the zone is updated, giving backup servers a means of identifying modifications. 
 
· Example: 2024010701 
4. Refresh Time: 
· Description: Indicates how long, in seconds, secondary DNS servers wait before pinging the main server in order to check for updates. It chooses the frequency at which data is refreshed on secondary servers. 
· Example: 3600 seconds (1 hour) 
5. Retry Time: 
· Description: Indicates the time, in seconds, that secondary servers wait before retrying a failed zone transfer. If a zone transfer fails, the secondary servers wait for this duration before attempting another transfer. 
· Example: 900 seconds (15 minutes) 
6. Expire Time: 
· Description: Sets the maximum time, in seconds, that a secondary server will use the data without a successful zone transfer from the primary server. After this time, the secondary server considers its data outdated. 
· Example: 1209600 seconds (2 weeks) 
7. Minimum TTL (Time to Live): 
· Description: Defines the default TTL for resource records in the zone. TTL is the time, in seconds, that records are cached by other DNS servers and clients. It influences how long outdated data is retained.  	Example: 60 seconds (1 minute) 
 
Example Configuration with Caching and Waiting Times: 
[image: ] 
2(b) 
The $ORIGIN directive is used to streamline zone file creations. Readability and streamline setup can be enhanced by avoiding repetition. Furthermore, it is much helpful when working with sub-domains. 
This is how $ORIGIN functions and how a sub-domain may be created using it: 
· Default Domain Origin: 
· Usage: $ORIGIN, which is placed at the start of the zone file, establishes the default domain name origin for the resource records that follow in the file. 
· Example:  
if $ORIGIN unn.co.uk. is set, then any entries that come after it will be compared to unn.co.uk. if they don't have a fully qualified domain name (FQDN). 
· Simplification of Records: 
Without $ORIGIN: 
[image: ] 
With $ORIGIN unn.co.uk.: 
[image: ] 
1. Using $ORIGIN significantly reduces redundancy and makes the zone file more concise and readable. 
2. Creating a Sub-Domain: 
· Usage: When establishing sub-domains inside the primary domain, $ORIGIN is very helpful. 
 
· Example:  
 
All entries that come after with a fully qualified domain name will be seen as being related to tech.unn.co.uk if $ORIGIN tech.unn.co.uk is set. 
 
Sub-Domain Example: 
[image: ] 
1. With $ORIGIN, there's no need to repeat tech.unn.co.uk. for each record within the sub-domain. 
2. Avoiding Typos and Redundancy: 
 	Benefit: By eliminating repetition, $ORIGIN lowers the likelihood of mistakes and facilitates DNS configuration management. The $ORIGIN directive is the only part that has to be updated if the domain name changes.  (NIST, n.d.)

Section 2:HTTP Deployment (20 Marks) 
1(a) 
Web Server Setup and Configuration (Using Nginx for "unn.co.uk")  
Step 1: Install Nginx sudo apt update sudo apt install nginx 
 
Step 2: Configure Nginx 
File: /etc/nginx/sites-available/unn 
[image: ] 
Step 3: Create Document Root sudo mkdir -p /var/www/unn sudo chown -R www-data:www-data /var/www/unn 
 
Step 4: Create a Sample Page echo "<html><body><h1>Welcome to unn.co.uk</h1></body></html>" |  sudo tee /var/www/unn/index.html 
 
Step 5: Enable the Site Configuration sudo ln -s /etc/nginx/sites-available/unn /etc/nginx/sites-enabled/ 
[image: ]  
Step 6: Restart Nginx sudo systemctl restart nginx 
 
Verify Configuration 
Visit "http://unn.co.uk" in a web browser  
(IBM, 2020)
[image: ]  
Advantages and Disadvantages Compared to Apache: 
Advantages of Nginx: 
· Performance: Nginx is known for its high performance, especially in handling concurrent connections. 
· Low Resource Usage: Nginx typically uses less memory compared to Apache, making it efficient in resource usage. 
· Event-Driven Architecture: Nginx uses an event-driven architecture, allowing it to handle a large number of simultaneous connections efficiently. 
Disadvantages of Nginx: 

Module Availability: While Nginx has many modules, Apache has a larger ecosystem of modules and extensions. 
· .htaccess: Apache's .htaccess files provide per-directory configuration, which can be convenient for certain setups. Nginx doesn't use .htaccess, and configuration changes usually require a server reload. 
Concept Explanation: 
When running Apache in a load-balanced system, virtual websites, also known as virtual hosts, are essential for effectively dividing up incoming web traffic among several servers. In a load-balanced configuration, the load is divided between multiple servers along with websites or domains hosting on a physical server. 
Key Components and Functionality: 
1. Virtual Hosts Configuration:  	Definition:  
Virtual Host configuration is used by Apache to provide content on multiple basis depending on the IP address or name of domain.  
 	Working: 
Each incoming request is differentiated by other using Apache as it assigns virtual host to a unique IP / domain.  
2. Load Balancing: 
· Definition: 
Load Balancing is the distribution of network traffic among multiple servers and it helps in maximum resource utilization. 
· Working: 
 Virtual hosts are configured to distribute incoming requests across multiple backend. It is done by assigning requests according to load balancing algorithms (i.e. Round Robin and Least Connections). 
 
3. Benefits: 
· Scalability: 
Virtual hosts has made web services more scalable by using additional servers. 
· Fault Tolerance: 
In case of server failure load balancer reroutes ongoing service to working servers.. 
· Services isolation. 
Applications and websites are isolated using virtual host. 
· Configuration Example: 
· Configuration File for Apache: 
[image: ] 
As Nginx Server: 
[image: ] 
1(b) 
Framework of load-balanced Apache web server: 
Apache provides server blocks or virtual hosts which helps in managing several websites , reduces redundancy and performance optimization. 
1. Server Blocks or Virtual Hosts Configuration: 
 	 Configuration files for virtual hosts can be set up using Apache.  
The configuration parameters include directives such as DocumentRoot, ServerName, and ErrorLog, providing tailored settings for each hosted website. 
[image: ] 
 
1. Load Balancing Configuration: 
 	By splitting incoming request across several Apache servers load balancing can be achieved. 
Dedicated load balancers or tools can be used to implement load balancing. To handle incoming traffic virtual host can be configured. 
2. Dynamic Content and Applications: 
 	Apache’s virtual hosts provides static and dynamic files. Load balancing distributes requests to avoid load over a single server. 
3. Scalability and Redundancy: 
 	Load balancing configurations can be utilized using virtual hosts which helps in improving scalability. 
Hence, redundancy can be reduced. 
4. SSL/TLS Configuration: 
 	Virtual hosts are configured to handle secure connections using SSL/TLS certificates. This is crucial for load-balanced environments, where secure communication is a priority. 
[image: ] 
 

 








 
Section 3:NFS Deployment (20 Marks) 
1(a) 
NFS Setup and Configuration for the Company:    
It is worthy for the company to setup NFS for file sharing and content distribution. 
1. Install NFS Kernel Server: 
· Install NFS Kernel server on each NFS designated server using package manager.  sudo apt install nfs-kernel-server 
[image: ] 
Network Configuration (NFS Server 1): 
· Ensure network configuration (/etc/netplan/10 cloud-init.yaml). 
[image: ] 

 
NFS Exports Configuration ( NFS Server 1): 
Use (/etc/exports)  to edit NFS export files in order to define access permissions and shared directories 
[image: ] 
Apply NFS Export Changes: 
· Make changes to NFS server after modifying export files. sudo exportfs -a sudo systemctl restart nfs-kernel-server 
Network Configuration for NFS Server 2 : 
Repeat Server 1 steps starting from network configuration adjustment to applying changes. 
[image: ] 
NFS Client Configuration: 
· To mount shared directories install NFS client package. sudo apt-get install nfs-common sudo mount -t nfs 192.168.101.6:/var/content /mnt/content 
(Red hat, n.d.)
 
Utilizing rDNS for Enhanced NFS Security:  
Reverse DNS (rDNS) can be implemented as a security mechanism to control and restrict access to the shared content repository in the NFS (Network File System) setup. Below is a discussion on how rDNS can be configured and employed for enhanced security. 
1. Understanding rDNS: 
 	Reverse DNS is a process that maps IP addresses to domain names. In the context of NFS security, it helps verify the authenticity of incoming requests based on the origin's domain name. 
2. Configuration on NFS Server: 
 	Configure the NFS server to perform reverse DNS lookups during incoming requests. This is typically set up in the NFS server's configuration files. 
[image: ] 
The rDNS option indicates that reverse DNS lookups should be enforced for clients accessing the shared content. 
1. DNS Configuration: 
· Ensure that the DNS server used by the NFS server is properly configured to perform reverse DNS lookups. 
· Verify that forward and reverse DNS records are accurate and up-to-date for all participating machines. 
2. Client Authentication via rDNS: 
· When a client attempts to access the NFS server, the server performs a reverse DNS lookup on the client's IP address. 
· If the rDNS lookup matches the expected domain name, access is granted; otherwise, access is denied. 
3. Benefits of rDNS as a Security Mechanism: 
· Access Control: rDNS adds an extra layer of access control by validating the authenticity of incoming requests based on domain names. 
· Mitigation of Spoofing: Helps mitigate IP address spoofing attempts, as attackers would need to falsify both IP and DNS information. 
· Granular Control: Enables granular control over which machines (identified by domain names) are allowed to access the NFS repository. 
4. Considerations and Best Practices: 
· Regularly review and update DNS records to ensure accuracy. 
· Monitor DNS logs for any suspicious activity or failed rDNS lookups. 
· Understand that rDNS adds an additional computational overhead, so consider the performance impact on high-traffic systems. 
5. Testing and Verification: 
 	Test the NFS setup with rDNS enforcement to ensure that only authorized machines, with valid reverse DNS records, can access the shared content. 
Using nslookup Command: nslookup 192.168.101.6 nslookup 192.168.101.7
Using host Command: 
host 192.168.101.6 host 192.168.101.7 
 
Using dig Command: dig -x 192.168.101.6 dig -x 192.168.101.7 
 
Using a Bash Script: 
[image: ] 
 
1(b) 
rDNS Validation Process with Regex-Defined Domain Name Export: (IBM, 2018) 
1. Understanding Regex-Defined Domain Name Export: 
 	In the context of the provided company, let's assume the regex pattern for NFS servers is nfs[12]\.tech\.co\.uk. 
2. Configuration of rDNS Entries: 
· Add rDNS entries for NFS servers in the reverse DNS zone file, e.g., /etc/bind/db.168.192.inaddr.arpa: 
[image: ] 
Regex Validation for Domain Names: 
· Implement regex validation in DNS server configurations. 
[image: ] 
Security Mechanism Implementation: 
· Configure the DNS server to use regex validation during rDNS lookups. 
Testing and Monitoring: 
Use nslookup or dig to test rDNS entries. 
nslookup 192.168.101.6 
· Monitor DNS logs for any irregularities. 
1. Log Analysis and Auditing: 
· Set up log analysis tools or scripts. 
[image: ] 
Documentation and Maintenance: 
· Document the regex pattern in a secure location.










 
Section 4:MySQL Deployment (20 Marks) 
1(a) 
MySQL Setup and Configuration: 
1. MySQL Installation: 
 Install MySQL on the designated server machine: sudo apt-get update sudo apt-get install mysql-server 
 
2. Secure MySQL Installation: 
 Run the MySQL secure installation script: 
sudo mysql_secure_installation 
 
3. MySQL User and Database Creation: 
· Log in to MySQL as the root user: sudo mysql -u root -p 
· Create a dedicated MySQL user for PHPMyAdmin: 
CREATE USER 'phpmyadmin_user'@'localhost' IDENTIFIED BY 'secure_password'; 
· Create a separate database for PHPMyAdmin: 
CREATE DATABASE phpmyadmin_db; 
· Grant privileges to the PHPMyAdmin user: 
GRANT ALL PRIVILEGES ON phpmyadmin_db.* TO 'phpmyadmin_user'@'localhost'; 
FLUSH PRIVILEGES; 
4. PHPMyAdmin Configuration File: 
 Ensure that the PHPMyAdmin configuration file (config.inc.php) includes the correct credentials: 
[image: ] 
 
5. PHPMyAdmin Installation: 
 Install PHPMyAdmin: 
sudo apt-get install phpMyAdmin 
During installation, select Apache2 as the web server and configure with dbconfig-common. 
 
6. Configure Apache2 for PHPMyAdmin:
Include PHPMyAdmin configuration in Apache: 
sudo nano /etc/apache2/apache2.conf Include /etc/phpmyadmin/apache.conf 
sudo systemctl restart apache2 
 
7. Enhance PHPMyAdmin Security: 
· Access PHPMyAdmin web interface at http://localhost/phpmyadmin. 
· Set up additional authentication for PHPMyAdmin if required. 
8. Restrict User and Database Access: 
· Limit access to the PHPMyAdmin user from localhost only. 
· Ensure PHPMyAdmin is not accessible directly from the internet. 
 
9. SSL/TLS Encryption: 
· Consider securing MySQL connections using SSL/TLS encryption. 
· Configure MySQL to require SSL for PHPMyAdmin connections. 
 
10. Additional Authentication for PHPMyAdmin: 
 	Implement additional authentication mechanisms for PHPMyAdmin, such as two-factor authentication or integration with an LDAP server, based on security requirements. 
 
11. Regular Password Updates: 
 	Enforce a policy for regular password updates for MySQL users, including the PHPMyAdmin user. 
 
12. Firewall Rules: 
 	Implement firewall rules to allow MySQL and PHPMyAdmin access only from trusted IP addresses. 
 
13. Audit Logs and Monitoring: 
· Enable MySQL audit logs to monitor and review user activities regularly. 
· Implement monitoring solutions to detect and alert on unusual activities. (Mysql, n.d.)
 
1(b) 
Database Creation and Configuration: 
1. Database Naming: 
Try Choosing a simple and descriptive name for the database. For example, in the company's context, prefix the database name with a relevant identifier, such as 'intranet_db' or 'web_content_db'. 
2. Collation and Character Set: 
Set appropriate collation and character set for the database, considering the types of data it will store. For example: 
CREATE DATABASE intranet_db CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci; 
3. Table Structure and Indexing: 
· Design an efficient table structure, considering normalization and the specific requirements of the system.  
· Apply appropriate indexing on columns that are frequently used in search queries. 
User Account Creation and Configuration: 
1. Username and Host Restriction: 
 	While creating a user account, give it a suitable name, taking into consideration any applicable naming standards. For example: 
CREATE USER 'intranet_user'@'localhost' IDENTIFIED BY 'strong_password'; 
2. Host Restriction: 
 	To improve security, restrict the user account to connections from particular hosts: 
CREATE USER 'intranet_user'@'192.168.1.0/24' IDENTIFIED BY 'strong_password'; 
3. Privileges Assignment: 
 	Give the user account just the privileges that are required. Adhere to the least privilege principle. For instance, if the user requires the ability to read and write to particular tables: GRANT SELECT, INSERT, UPDATE ON intranet_db.* TO 'intranet_user'@'localhost'; 
4. Password Policies: 
 	Implement stringent password requirements for user accounts, mandating a mix of capital, lowercase, digits, and unusual characters. Also establish a password expiration policy and mandate frequent upgrades. 
5. SSL/TLS for Connections: 
 	For increased security, promote or mandate SSL/TLS connections to the database. This is especially crucial for systems that handle sensitive data. 
6. Audit and Monitoring: 
 	To monitor any questionable activity, activate audit logging for user actions. 
7. Regular Review and Update: 
 	To keep up with evolving business requirements and staff changes, evaluate and update user accounts and privileges on a regular basis. (MySQL , 2020)
 
 
 
 
 

References 
IBM, 2018. [Online]  
Available at: https://www.ibm.com/docs/en/spm/7.0.9?topic=system-deploying-your-webapplication-web-server.  
IBM, 2020. HTTP Deployment. [Online]  
Available at: https://www.ibm.com/docs/en/spm/7.0.9?topic=system-deploying-your-webapplication-web-server.  
Microsoft, 2020. [Online]  
Available at: https://learn.microsoft.com/en-us/windows-server/networking/dns/quickstart-installconfigure-dns-server 
MySQL , 2020. [Online]  
Available at: (https://www.mysqltutorial.org/mysql-create-database/, n.d.) 
Mysql, n.d. MySQL documentation. [Online]  
Available at: (https://dev.mysql.com/doc/mysql-secure-deployment-guide/5.7/en/securedeployment-overview.html, n.d.) 
NIST, n.d. [Online]  
Available at: https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-81-2.pdf. 
 
 
image2.jpg

image3.jpg

image4.jpg

image5.jpg

image6.jpg

image7.jpg

image8.jpg

image9.jpg

image10.jpg

image11.jpg

image12.jpg

image13.jpg

image14.jpg

image15.jpg

image16.jpg

image17.jpg

image18.jpg

image19.jpg

image20.jpg

image21.jpg

image22.jpg

image23.jpg

image24.jpg

image25.jpg

image26.jpg

image27.jpg

image28.jpg

image29.jpg

image30.jpg

image31.jpg

image32.jpg

image33.jpg

image34.jpg

image35.jpg

image36.jpg

image37.jpg

image38.jpg

image39.jpg

image40.jpg

image41.jpg

image42.jpg

image43.jpg

image44.jpg

image45.jpg

image46.jpg

image47.jpg

image48.jpg

image1.jpg

