Project 2 — Basic Shell Part 2: Job Control

START THIS PROJECT EARLY

READ THIS ENTIRE DOCUMENT
(TWICE)

The Big Idea

In this assignment you will be building upon the basic shell you developed in Project 1. Specifically, we will
be focusing on Process Groups, Signals, and Signal Handlers in order to implement a standard job control

system similar to the ones found in most shells. In this context, a job is the execution of a single command
line entry. For example:

$ls -l

is a single job consisting of one process. Likewise,

$ls-l|grep.c
is a single job consisting of two pipelined processes.

Upon successful completion of this project, your shell will have the following additional functionality:

* You will be able to check the status of jobs with the new built-in jobs command

* You will be able to send signals to specific processes and job nhumbers from your command line
using the new built-in kill command (Tip: Port over your code from Homework 4)

* You will be able to suspend the foreground job by hitting Ctrl+z

$ sleep 100

AZ[0] + suspended sleep 100
$ jobs

[0] + stopped sleep 100

$

* You will be able to continue a stopped job in the background using the new bg command:

$ jobs

[0] + stopped sleep 100
[1] + stopped sleep 500
$ bg %1

[1] + continued sleep 500
$ jobs

[0] + stopped sleep 100
[1] + running sleep 500

$

1
* You will be able to start a job in the background by ending a command with the ampersand (&)

character. Doing this causes the shell to display the job number and the involved process IDs
separated by spaces:

$ frame_grabber cam0 | encode -0 awesome_meme.mp4 &

[0] 3626 3627

$ jobs

[0] + running frame_grabber camO0 | encode -0 awesome_meme.mp4 &

$

* You will be able to move a background or stopped job to the foreground using the new built-in fg
command:

$ jobs

[0] + running frame_grabber camO | encode -0 awesome_meme.mp4 &

$ fg %0

encoding frame 42239282 [OK]

encoding frame 42239283 [OK]

encoding frame 42239284 [OK]

encoding frame 42239285 [OK]

encoding frame 42239286 [OK]*"Z

[0] + suspended frame_grabber camO | encode -0 awesome_mem.mp4 & $

* You will also be able to kill all processes associated with a job using the new built-in kill command:

$ jobs

[0] + running frame_grabber camO0 | encode -0 awesome_meme.mp4 &
$ kill %0

[0] + done frame_grabber camO | encode -0 awesome_meme.mp4 &

$

Using Process Groups

Process Groups are, as the name would imply, a group of processes. Jobs are based on process groups.
Each process group has a Process Group ID (PGID), which is generally chosen to be the same as the
PID of the first process placed in the group. This process is sometimes referred to as the process group
leader, but it has no special significance. Process groups are convenient because they provide a simple
means to send a group of related processes the same signal — generally for control purposes (i.e.
SIGTSTP, SIGCONT, etc). More importantly, however, process groups are used to determine which
processes can read and write to stdin and stdout as well as which processes receive control signals from
the terminal. For example, when you send *C (SIGINT) or AZ (SIGTSTP) using the keyboard, the terminal
catches the keystroke and sends the corresponding signal to every process in the foreground process
group. For this reason, interactive shells (bash, zsh, etc), put the processes comprising a job into their
own process group. Let’s look at an illustration:

Session 400
process group leaders
) bash find sort
session
leader

= 660 Controlling

Process
group 400 SID =400 fOrcground
PPID =400
PGID = 658 process grouP
background SID = 400 PPID =400 PGID
process groups =660 SID = 400
wce '

PID = 659 e B
controlling procesS PPID =400 Z(I)]g ;(}616])1 FI;I6[()) -
PPID = 3§9p . PGID = 658 -

Controlling SID = 400 SID = 400
PGID =400 terminal
SID =400 ermina Process Process
Foreground PGID group 658 group 660

Figure 1: The controlling terminal has a session (set of process groups). The foreground process group
receives interactive control signals from the terminal sent by the keyboard. Only the foreground process
group may read from stdin and write to stdout. If a background process reads from stdin or writes to
stdout, all the processes in its process group will receive the SIGTTIN or SIGTTOU signal, respectively.

Figure 1 shows a situation that can be easily reproduced with the following commands:

"k

$ find . -name
[1] 658 659
$ sort numbers.txt | uniq

" we-l &

It is important to note that the shell (bash in this case) places jobs in their own process groups
immediately after fork()ing. This ensures that the shell is never a member of a child process group. This is
important because, otherwise, interrupting the foreground sort number.txt | uniq job in our example via A*C
would send SIGINT to bash (PID 400) along with PIDs 660 and 661, which would kill not only the
foreground process group but our shell as well! By putting jobs into their own process groups, the shell
protects itself from receiving such control signals intended only for the current foreground process group.

3
Putting processes into a process group is easily accomplished. For example, consider the following:

1for (t=0; t<tasks_in_job; t++) {
2job_pids][t] = fork ();
ssetpgid (job_pids[t], job_pids[0]);
4
sif (job_pids][t] == 0) {
¢/* child logic */
7} else {
s/* parent logic */
o}
10}

Obviously, there is nuance to this. First, keep in mind that passing a zero to either argument of setpgid()
has special meaning—the following are all equivalent:

setpgid (0, 0);
setpgid (getpid(), 0);
setpgid (getpid(), getpid());

So, what we are doing in our fork() example above is to have both the parent and the child attempt to put
the child into a new process group. This is necessary because we don’t know in what order the scheduler
will choose to execute these two processes after the fork(). Note, that there is no harm in placing a
process into a process group it is already a member of—simply nothing happens. In this way, regardless
of which process (parent or child) gets schedule first, the child will get kicked out of the parent’s process
group as quickly as possible.

Important SIGCHLD Details

Keep in mind that when a child process changes its execution_state, the parent process will receive a
SIGCHLD signal. This state change may be caused by signals sent to the_child such as SIGTSTP,
SIGCONT, SIGTERM, SIGKILL, etc. When the child receives one of these signals (and changes state),
the kernel subsequently sends the parent a SIGCHLD signal so that it may act accordingly. The reason
the kernel sent the SIGCHLD signal can be determined by the parent process by investigating the status
returned by waitpid. This requires the use of the WIF* macros detailed in the waitpid man page. For
example:

int status;
chld_pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)

if (WIFSTOPPED (status)) {
/* child received SIGTSTP ¥/
} else if (WIFCONTINUED (status)) {
/* child received SIGCONT */
}else ...

This is_an_important opportunity for the parent shell to change which process group is in the foreground—
there are other important opportunities as well, such as job creation. Setting the foreground process group
is accomplished by calling tcsetpgrp() (see man tcsetpgrp). Keep in mind that when a foreground job
completes, the shell’'s process group does_not automatically get set to the foreground! It is the shell’'s
responsibility to ensure that happens.

Other Important Signals: SIGTTIN and SIGTTOU

We have already discussed the fact that only the foreground process group can read from stdin and write
to stdout. So... what happens when a process not in the foreground process group tries to do one of these
two activities? Well, the offending background process will receive the SIGTTIN signal if it tries to read
from stdin or the SIGTTOU signal if it tries to write to stdout. The default handler for these signals stops
the offending process (it does_not terminate it!). This will obviously be a big issue for your main shell
process, which will potentially attempt to do both of these things in the background (e.g. the prompt!) while
a foreground job is running. Your main shell process should_never be in a stopped state — if that happens,
it's game over: the manager of all the process groups (i.e. jobs) is out of commission.

Hint: It may be smart for the shell to check if it is the foreground process using tcgetpgrp() when in this
scenario. Keep in mind, a process can always intelligently and judiciously pause() until the time is right to
take back the foreground.

Process Groups are_Not Jobs (but they help!)

In implementing your job system, you will find that process groups alone do not provide everything you
need to define a job. Job numbers, for example, will have to be tracked by you as well as the name of the
job (i.e. the command entered at the prompt). How will you know when a job is done? You will need to
keep track of the child PIDs comprising a job so that you can check for job completion every time a child
terminates. If all child PIDs comprising a job have terminated, then the job is complete. For simplicity, you
only need to be able to support a maximum of 100 simultaneously managed jobs. | suggest keeping an
array of the following struct to manage jobs:

typedef enum {
STOPPED,
TERM,
BG,
FG,

} JobStatus;

typedef struct {
char® name;
pid_t* pids;
unsigned int npids;
pid_t pgid;
JobStatus status;
} Job;

| also suggest writing a small family of functions (i.e. an API) for doing common job activities (e.g. adding,
removing, killing, etc). How you actually end up doing this, however, is up to you. If you want to support an
arbitrary number of simultaneously managed jobs, feel free to implement a linked list of Job structures (but
| think you already have enough to deal with). Just make sure what you design here works.

The New Job Management Built-In Commands

You will need to write four (4) built-in commands: fg, bg, kill, and jobs. Unlike the which command, |
recommend running these job control commands inside the shell process so that they have the ability to
easily mutate elements of the Job array. To be clear, these job management commands do not need to
support redirection or piping. Except for the jobs command, all of these commands can accept a job
number as an argument. As you saw in the examples on Page 1, when specified as a command argument
job numbers are decorated with a leading percent (%) character to indicate that the number that follows is
a job number.

Built-in Command: fg

If no arguments are supplied, the following should be printed to the screen and no job states are
modified: Usage: fg %<job number>

When a properly formatted job number (that exists) is supplied, the corresponding job is moved to the
foreground (and continued if necessary). If the supplied job number is not properly formatted or
corresponds to a job that does not exist, the following is printed to stdout:

pssh: invalid job number: [job number]

where [job number] is the supplied (malformed or invalid) argument.

Built-in Command: bg
If no arguments are supplied, the following should be printed to the screen and no job states are
modified: Usage: bg %<job number>

When a properly formatted job number (that exists) is supplied, the corresponding job is continued but not
moved to the foreground. If the supplied job number is not properly formatted or corresponds to a job that
does not exist, the following is printed to stdout:

pssh: invalid job number: [job number]

where [job number] is the supplied (malformed or invalid) argument.

Built-in Command: Kkill
If no arguments are supplied, the following should be printed to the screen and no job states are
modified: Usage: kill [-s <signal>] <pid> | %<job> ...

This means that a mixed list of PIDs and job numbers can be supplied to the kill command, and the
desired signal will be sent to each one specified. (The bar simply means the user can supply a pid_OR a
job number; the ellipsis just means the user can supply as many of these as they like). By default
SIGTERM is sent. If the optional -s argument is provided, then the specified signal number is sent instead.

If an invalid job number is supplied, the following is printed to stdout:
pssh: invalid job number: [job number]

where [job number] is the supplied job number.

If an invalid PID is supplied, the following is printed to stdout:

pssh: invalid pid: [pid number]

where [pid number] is the supplied (malformed or invalid) argument.

Built-in Command: jobs
This command takes no arguments. All active jobs are simply printed to stdout in the following format:
[job number] + state cmdline

where job number is the job number, state is either stopped or running, and cmdline is the commmand line
used to start the job. Here is an example output showing all possible states:

[0] + stopped foo | bar | baz
[2] + running pi_computation

[3] + stopped top &

notice that it is absolutely possible for jobs to terminate in an order different than they were started in (i.e.

job 1 is already done)! The next job that is launched should therefore be job number 1 since it is the
lowest available job number.

Providing Job Status Updates

In addition to being able to run the built-in jobs command to see if background jobs are stopped or
running, the user should receive feedback from your shell when:

1. A foreground job is suspended via *Z (SIGTSTP). For example:

$./my_program

Running...

AZ[1] + suspended ./my_program
$ jobs

[0] + running pi_computation

[1] + stopped ./my_program

$

2. A stopped background job is continued (either via bg or by sending it SIGCONT directly using kill).
For example:

$ jobs

[0] + running pi_computation
[1] + stopped ./my_program
$ bg %1

[1] + continued ./my_program
$ jobs

[0] + running pi_computation
[1] + running ./my_program

3. A background job completes or is terminated. For example:

$ jobs

[0] + running pi_computation
[1] + stopped ./my_program
$ kill -s 9 %0

[0] + done pi_computation

This “done” status message should not be displayed when a foreground process
completes/terminates— only background processes.

7
Hint: These messages to stdout are reports generated by the shell when one of its child process groups
changes state. Consequently, these messages will be triggered within your shell’s SIGCHLD signal
handler. Be careful though—some jobs will consist of multiple processes! If a job with 5 processes

changes state, you don’t want the shell to report 5 status changes when the job is continued, for
example—you only want it to notify the user once that the entire job has continued.

Softball: For the purposes of this project, feel free to put the necessary printf() statements directly in your
signal handler (although, this is bad practice and should never be done in production code because
printf() is non-reentrant due to its output buffering!). If you are feeling ambitious, you could use write()

directly instead of printf(), but this will require you to do string formatting manually prior to calling write(),
which will further increase your code complexity.

Summary of Job States: The Big Picture

Now that we have discussed the details, let’'s step back and consider the possible states a job can be in
and how it may transition between these states by examining the following diagram:

command
1. Control-C (SIGINT)
Running in 2. Control-\ Terminat
Foreground (SIGQUIT) erminated
Running in Contro/—Z
fg (SIGTSTP) Stopped in
g (SIGCON.) bg (SIGCONT)
command & kil
kil
Background Terminal read (SIGTTOU)
1. kill -s 19 (SIGTTIN) 3. Background

(SIGSTOP) 2. Terminal write

Keep in mind that signal events such as Control-Z, Control-C, Control-\, SIGTTIN, SIGTTOU, etc will
directly change a job’s state and the shell must be reactive in handling these events through its SIGCHLD
handler.

Meanwhile, other events are caused directly by the shell as a result of commands typed by the user (e.g.
fg, bg, and kill). In these cases, the shell itself is responsible for sending the necessary signals to the corre
sponding job’s process group. Once a job receives a signal sent by the shell, the child processes
comprising the job may change state, which may result in required reactive behavior of the shell, again,
through its SIGCHLD handler.

The key to this project is properly managing signals received by the shell and sending the correct signals
to child processes groups (i.e. jobs) when necessary to ensure proper state.

For example, if a foreground job receives SIGTSTP from the controlling terminal, the child processes in
the process group for that job will change state, causing the shell to receive SIGCHLD. In reacting to the
SIGCHLD signal, the shell must update its job management data structure, retake the foreground, and
then print job status feedback to stdout informing the user that the job was suspended.

Grading Rubric & Convenient Feature Checklist

When assessing the following table prior to submission (notice the fancy check boxes for your benefit)
please keep in mind that although partial credit may be possible in extremely select circumstances, it is
not very likely. Do not halfway implement a feature in a way that is completely non-functional, give up, and
expect partial credit. Your features must actually work to receive credit.

Feature Points

o A process group is created for each new job. The PID of the first process in the
10
job is used as the PGID.

o A new job intended to run in the foreground is made the foreground process
10

group.

o A new job intended to run in the background is correctly setup and launched
10
in the background. Job number and associated PIDs are printed to stdout by
the shell as specified in the problem description.

o The shell process does not become stopped by SIGTTIN or SIGTTOU due to
10
attempted background reads or writes to stdin/stdout.

o The shell process properly waits on all child processes comprising jobs
10
(i.e. the shell does not generate a legion of zombie processes).

o A new background job is given the lowest available job number. 5

o Ctri+Z (SIGTSTP) properly suspends the foreground job. The suspended
message specified in the project description is printed to stdout by the shell
informing the user accordingly. The shell itself is not suspended and is
moved to the foreground.

o CtrI+C (SIGINT) properly terminates the foreground job. The done message
specified in the project description is . NOT printed to stdout by the shell. The
shell itself is not terminated and is moved to the foreground.

o Completed/terminated background jobs result in the shell printing the done
message specified in the project description to stdout. The job is
appropriately removed from the job management system.

o A job continued via either bg or SIGCONT properly resumes running in the

background and the continued message specified in the project description
is printed to stdout by the shell.

o The fg built-in command functions as specified in the project description. 5 o The
bg built-in command functions as specified in the project description. 5 o The jobs
built-in command functions as specified in the project description. 5 o The kill built-in
command can send signals to specified PIDs. 5

o The kill built-in command can send signals to an entire process group

associated with a specified job number.

o The kill built-in command can send a user specified signal number as

specified by the optional -s parameter.

A Few Final Tips

+ Always assume the user has their tty set to properly respond to background stdout writes with
SIGTTOU. Test your shell under this behavior by ensuring your terminal is properly set by running
the following command prior to invoking your pssh shell:

$ stty tostop

Your project will be graded under an environment with this behavior.

» When calling tcsetpgrp() as a background process, you may find that the terminal is sending your
shell SIGTTOU. This is because background processes are not allowed to modify the terminal. This
includes changing the foreground process group! However, your shell_must take back the foreground
when the current foreground job is either suspended or terminated. So, how does the shell take back
the foreground?

The answer is to temporarily ignore the SIGTTOU signal very briefly while performing the tcsetpgrp()
call (as we discussed in Lecture 14).

Do_NOT ignore SIGTTOU all the time, though—this will yield undesirable behavior.

» The kill() function provided by signal.h has the ability to send a signal to all processes within a
specified process group. This is very useful! | suggest you read the man page:

$ man 2 kill

* The following man pages also make for good reading and could prove to be extremely useful references:

$ man 2 waitpid

$ man 2 signal

$ man 2 setpgid

$ man 3 tcgetpgrp
$ man 2 pause

» Use the provided job info.c program to help you check that you are properly putting job processes
into their own process group. You can also use job info.c to check that you are setting the

foreground process correctly. Details and examples of how to do this are in the header comments of
job info.c.

11

