
Digital Investigation (2005) 2, 89e93

www.elsevier.com/locate/diin
The joys of complexity and the deleted file*

Geoff H. Fellows

4 Brockhall Road, Flore Northamptonshire NN7 4NG, UK

KEYWORDS
NTFS;
FAT;
Deleted file;
Allocation unit;
SID;
MFT

Abstract This article considers the improved quality of evidence which may be
extracted from computers running under modern operating systems and file
systems. By way of illustration the author discusses the treatment of deleted files
under legacy DOS systems, Windows 9x systems and the NTFS file system, and
illustrates the various data artefacts associated with each. It is clear that, although
the evidence resulting from more modern systems is more complex, and that
analysts require more in-depth training to understand them, the rewards in terms
of evidential probity can be considerable, enabling the analyst to produce evidence
which in earlier systems was simply not there to be found.
ª 2005 Elsevier Ltd. All rights reserved.
A few weeks ago I was pondering the necessity
of preparing evidence, required for a criminal
trial, to explain deleted files and the workings of
the Windows Recycle Bin under NTFS, and after an
hour of struggling with the usual problem of trying
to explain complex ideas in simple terms I was
struck by the thought, ‘‘How much easier this
would have been 12 or 15 years ago.’’

Then I began to think about other areas of my
field of Forensic Computing, which are nowadays

* This article examines the rewarding nuggets of evidence to
be found in the ‘deleted’ file. In addition it tracks the
improvement in the quality of evidence thanks to progressive
operating system changes.

E-mail address: geoff@gfellows.demon.co.uk
1742-2876/$ - see front matter ª 2005 Elsevier Ltd. All rights rese
doi:10.1016/j.diin.2005.04.001
orders of magnitude more complex than they used
to be. I found that without too much effort I could
think of a good many examples.

There are a number of consequences resulting
from this. One of those, of course, was exemplified
by my immediate problem of preparing an expla-
nation of complicated issues, which the ‘lay
person’ could understand. Another is the amount
of training and understanding which Forensic
Analysts need these days in order to do their work
effectively. That in turn results in the need for an
increased expenditure on the part of their employ-
ers on training e sometimes that expenditure is
forthcoming and sometimes it is not.

It has alsowidened the gap, I think, between new
analysts and experienced analysts, and it has also
resulted in many analysts specialising in particular
rved.

mailto:geoff@gfellows.demon.co.uk
http://www.elsevier.com/locate/diin

90 G.H. Fellows
areas of Forensic Computing. These ‘specialists’ are
then called upon quite frequently to support others
who, in the context of a particular case, find that
that expertise is required.

But then a much happier thought occurred to
me. ‘‘What about the quality of the evidence
that we are finding?’’ It is orders of magnitude
better and more reliable than it used to be in
those halcyon days of the early 1990s, and that
is our reward, as analysts, for all the extra work
and training, which we are required to under-
take.

Deleted Files are a prime example of this
reward. Consider the changes which have taken
place over the years, and their implications.

Deleted files on a FAT system

In the days of DOS operating systems and FAT-
based file systems a deleted file was a simple
thing. Once a file was deleted, the first letter
of the file name was lost (overwritten with the
hexadecimal character E5h) and the areas of
the File Allocation Table which used to point to
the storage areas on the disk occupied by the file
were set to zero, indicating that those allocation
units were available for reuse. That was it.

The directory entry for the file concerned was
subsequently liable to be overwritten, and the
allocation units were also liable to be overwritten,
but provided both survived then the likelihood of
a successful recovery of the deleted file depended
upon a number of factors:

� How many deleted files were there on the disk?
� How fragmented was the file before deletion?
� How big was the file?

In almost every circumstance on a FAT-based
system the recovery of a deleted file from a disk
involved a large element of guesswork on the part
of the analyst or on the part of the recovery
utility used because the actual FAT pointers were
lost. Recovering the file was largely a matter of
hoping that the sequence of allocation units
occupied by the file data could be reliably
identified.

Advent of the FAT Recycle Bin

Windows 95, whilst still being a FAT-only based
system, introduced the concept of the Recycle Bin,
and suddenly things got a bit better.
On a FAT-based disk (even under Windows XP
Pro) the actual system folder which constitutes the
Recycle Bin is called ‘Recycled’, and in broad
terms it is generally only files which are deleted
by a user of the computer which are placed in the
Recycle Bin. This is an immediate advantage to the
analyst, since it helps to distinguish between user-
deleted and system-deleted files.

At an evidential level, I always maintain that
files which are placed in the Recycle Bin are not
deleted files. They are current files on the system,
which are merely in a state preparatory to being
deleted (whatever the user of the computer might
think).

It gets better. The existence of the data in the
INFO2 file in the Recycle Bin folders (INFO on some
systems) means it is possible for the analyst to
acquire evidence about the date and time of the
deletion of the file as well as what its original full
path was on the disk. There is a logical structure to
this. The records in the INFO2 file are in chrono-
logical order of deletion.

Of course, once the file is cleared from the
Recycle Bin it becomes a deleted FAT file like
any other and the INFO2 records are cleared, but
even then, because the INFO2 file has an ordered
structure of records of 280 bytes in length (or
800 under Windows 2000, XP etc.) it is some-
times still possible in these circumstances to
recover deleted INFO2 file data and hence valu-
able evidence.

NTFS Recycle bins

Under the New Technology File System (NTFS) the
evidence gets better still.

One reason for this is the fact that the NTFS
Recycle Bin (the hidden system folder is actually

The joys of complexity and the deleted file 91
called ‘Recycler’ on an NTFS disk, rather than
‘Recycled’) is divided up into user Security ID’s
(SID’s), and each user’s deleted files are placed into
the folder relating to his or her SID. Of course, the
perennial issue about ‘Who’s fingers were on the
keyboard’ remains, but nevertheless the SID folders
can prove very valuable. The SID is divided into
three main parts:

� A ‘Type’ string, which on stand-alone machines
at least is usually ‘S-1-5-21.’

� A ‘unique’ computer ID string (in this
case 448539723-1844823847-839522115) fol-
lows next.

� The number, which indicates the actual user
concerned comes last e in this case users 1007
and 1008, as indicated in the Figure, Windows
XP Recycler IDs.

The login names associated with these two
SID’s can be identified from the Windows Registry
files.

Of course, each of the SID folders in the Recycle
Bin has its very own INFO2 file, and so the details
of file deletion in relation to each user logon name
is available as well.

I have come across another interesting circum-
stance relating to this topic. I was given a ‘LaCie’
60 GB NTFS formatted removable USB/FireWire
hard drive to examine.

The Microsoft Knowledge Base tells us that
‘removable media’ is not given a Recycle Bin, but
the definition of what is removable media and
what is not is rather loose, saying merely that it
is ‘Media which is easily removed from the
computer.’

However, the ‘LaCie’ drive did have a Recycle
Bin, and so it clearly did not fall within the above
loose definition. What was more interesting,
though, was the SID folders contained in the
Recycle Bin illustrated in the Figure, ‘LaCie’ Drive
Recycler Artefacts. It can be seen that in the past
it was connected to four different computers,
(evidenced by the Machine ID numbers, and all of
them identifiable with a little basic detective
work), and whilst connected to each machine,
files had been deleted from the ‘LaCie Drive’
contents. On three of the machines the user was
‘Administrator’ (User ID ‘500’) and it transpired
that on the fourth he also had Administrator
privileges. The user could, of course, have emptied
these Recycle Bin artefacts, but the fact is that he
could only ‘see’ and hence clear those files in the
Recycle Bin which had been deleted when the
drive was re-connected to the matching machine.
Therefore, he was unaware that there was much
more data to be found. This misconception and its
result led directly to a guilty plea and a conviction.

NTFS extents pointers

Can it get better still? Yes, it can.The regimeusedby
NTFS to point to file data out on the disk is quite
different from that used in FAT. This results, in
broad terms, in recovered deleted files from an
NTFS volumebeingmuchmore reliable, evidentially
speaking, than those recovered from a FAT volume.

Under NTFS the central index of data on the disk
or volume is kept in a system file, the Master File
Table (MFT). This hidden system file is essentially
a relational database of the disk content, and
contains an entry in it (usually 1024 bytes long) for
each file and folder on the disk.

The MFT records are themselves divided into
a number of separate data areas which are called
‘Attributes’ (not to be confused with DOS type file
attributes e Read Only, Hidden etc.). The ‘Data
Attribute’ in an MFT record points to the data on
the disk, but it does so using an ‘Extents Pointer’.

As you can see I have illustrated a typical file
MFT record Data Attribute. The attribute starts
with the header string 80h 00h 00h 00h, and the
logical and physical file sizes are included in the at-
tribute as well (as little-endian 64 byte integers e
logical file size is 67,640 bytes (offset 472 in the
screenshot) and the physical file size is 68,096
bytes (offset 456)).

I have highlighted the extents pointer, starting
at offset 480. This simple and elegant device is all
that is required to specify where this (contiguous)

92 G.H. Fellows
file lies on the disk and how many allocation units
it occupies. It decodes as follows:

The two nybbles of the extents header, added
together, makes five (2C 3Z 5), which means
that the next five bytes following the header are
required to be interpreted. Those five bytes are
85h 00h 5Eh A4h 00h.

The fact that the second nybble of the extents
header is a 2 means that the next two bytes are
required to define the number of allocation units
in the data run. This little-endian signed integer
translates into decimal as C133, meaning that the
data run is 133 allocation units (on this disk
synonymous with 133! 512 byte sectors). This
‘ties in’ with the physical size of the file (68,096
bytes), since 512! 133Z 68,096 bytes.

The first nybble of the extents header is a 3,
which means that the remaining 3 bytes describe
the starting logical allocation unit on the volume
for the file. It is also a signed little-endian integer.
In this case 5Eh A4h 00h translates as C42,078,
meaning that the file starts at logical allocation
unit 42,078 on the disk. It is as simple as that.

If the files were fragmented there would be
a series of two or more extents pointers, but each
one would work in the same way. The only
difference is that the start of run pointer for
subsequent extents pointers is relative to the start
of the one before it, and it might be a negative
value e i.e. relatively further back up the disk
from the last fragment.

What has all this to do with deleted files? When
a file is deleted on an NTFS volume two main
events occur as far as the file system is concerned.
Firstly, the MFT record for the file is marked as
relating to a deleted file (the bytes at MFT record
offset 22 and 23 are changed from 01h 00h to 00h
00h (in the case of a file). Secondly, a system file
called $Bitmap is updated to show that the
allocation units occupied by the file are available
for reuse by the system.

Nothing in the MFT record’s data (or other)
attributes is disturbed or altered (unless the MFT
record comes to be overwritten itself). That in turn
means that when the recovery of a deleted NTFS
file is made, the analyst (or the recovery software

Extents
header

Number of
allocation
units in the
data run
(little-endian signed)

Logical allocation
unit number where
file starts
on the volume

32 85 00 5E A4 00
used) knows precisely where that file used to
reside on the disk. There is no equivalent needed
here to the ‘guessing’ of FAT record pointers, and
provided that the data on the disk has not been
overwritten by another file then the deleted file
will be recovered reliably and to a much higher
evidential standard than under FAT. Recovering
fragmented files is not such a difficult issue either,
since all of the extents pointers for the fragments,
however many there are, will still be present in the
MFT data attribute.

And finally.

Even where the data has been partially overwrit-
ten on an NTFS volume, but the MFT record still
survives, the analyst may still be able to recover
and to produce useful evidence.

Consider the circumstance where the file above,
occupying 133 allocation units, is deleted, and
then a smaller file later overwrites the first, say, 10
allocation units but the MFT record for the deleted
file is not overwritten.

The extents pointer for the old (deleted) record
and the pointer for the new (current) record will
both point to the same place e logical allocation
unit number 42,078, and the analyst will know that
the deleted file was not fragmented. Therefore, he
or shemay find the remainder of the deleted file in
logical allocation unit numbers 42,088 through
42,211, provided they have not also been over-
written.

A physical inspection of the data in those
sectors may well correlate strongly with the in-
formation about the file in the surviving deleted
MFT record. That record contains not only the
logical and physical size of the file, but also the file
dates and times, the name(s) of the file (both long
and short), the file’s DOS attributes and so forth. In
some cases it will also indicate who is the owner of
the file and who has ‘rights’ in relation to it
(coupled with the system file $Secure and its
alternate data streams).

Consider the following trail of evidence: The
deleted file’s MFT record shows that it was called
‘Kidnap Demand.Doc.’ The data in the remaining
clusters has the format of an OLE2 Microsoft Word
document. In accordance with the file name the
textual content appears clearly to relate to
a kidnap demand for ransom. In addition the old
file ends, in the last sector, in exactly the right
place to accord with the logical file size found in
the MFT record. As a result the analyst would
arguably be in a strong evidential position to
maintain that a Microsoft Word document called

The joys of complexity and the deleted file 93
Kidnap Demand.doc did exist on the computer and
that the partially overwritten fragment which he/
she has recovered represents a substantial part of
that original document.

So, all in all, because of the joys of complexity,
our evidence nowadays about deleted files is much
better than ever it used to be in the ‘Good Old
Days’, but producing it requires a lot more educa-
tion of, and understanding by, the analyst involved
in examining the data.

Provided analysts are properly supported and
funded by an organization which understands their
needs and the issues involved, the evidence which
can be produced in this and other similar areas
looks set to improve.

Geoff Fellows is founder of The LG
Training Partnership. Prior to its
establishment he was in the North-
amptonshire police in the UK. He is
chairman of the F3 and is a member
of the UK Digital Evidence Group
(DEG).

	The joys of complexity and the deleted file
	Deleted files on a FAT system
	Advent of the FAT Recycle Bin
	NTFS Recycle bins
	NTFS extents pointers
	And finally ...

