
Product Engineer - Design Challenge V3
Objective

Design the Campaign Executor that executes a given campaign for reaching out to
candidates based on user-defined templates.

Background

Our system automatically identifies candidates who are a good fit for specific roles based on
predefined criteria. Once a candidate is recognised as suitable, We initiates a personalised
outreach campaign, termed an "outreach drip-campaign".

This campaign consists of a sequence of personalised messages sent over multiple days
and through various channels, such as email and LinkedIn. The sequence of these
messages is determined by user-defined templates, which are linked directly to specific
roles.

When a candidate responds to any message in the campaign, the sequence is halted,
reflecting a potential engagement. Our system manages these interactions, ensuring
campaigns cease after 30 days if no response is received or continue monitoring for
responses if all messages are sent before the 30-day mark.

The Campaign Executor capability, long requested by many users, aims to streamline
recruitment efforts by automating candidate engagement. This enhancement is expected to
increase response rates and efficiency while reducing the manual workload on recruiters.

Example User-defined Template:

1. Candidate identified -> LinkedIn request and email sent immediately.
2. Follow-up email sent after 2 days.
3. Final follow-up email sent after 5 days.

Task
<aside>☝ Once a candidate is identified as a good fit, our system will create a personalised
campaign definition and submit it to following endpoint exposed by your system: Campaign
Executor.We don’t expect you to design other parts of the system that is not Campaign
Executor

</aside>

Create the Campaign Executor that manages and executes these outreach campaigns.

Endpoint for Campaign Executor:

● PUT role/:roleId/candidate/:candidateId/campaign
○ Accepts a campaign definition and starts the campaign immediately. There

can only be 1 campaign running for a given candidate.
○ Returns a campaign ID.

Campaign Definition Example:

{
"nodes": [
{
"id": 1,
"type": "message",
"channel": "LINKEDIN_MESSAGE",
"message": "Hi Milan, \\nI'm interested in you background as Senior Software

Engineer at Showpad. I'm looking for people like you for our role of Software Engineer with
Startup Experience. \\nWould love to connect."

},
{
"id": 2,
"type": "message",
"channel": "GMAIL",
"subject_line": "Open to new opportunities?",
"message": "Hi Milan,\\nI came across your profile and was impressed with your work

as a Senior Software Engineer at Showpad. We're seeking individuals with your background
for a Software Engineer role in our team.\\n Would you be open to discussing this
opportunity?\\n\\nBest,Andreas"

},
{
"id": 3,
"type": "delay-step",
"delaySeconds": 172800

},
{
"id": 4,
"type": "message",
"channel": "GMAIL",
"subject_line": "Re: Open to new opportunities?",
"message": "Hi Milan,\\nI wanted to follow up on my previous email regarding the

Software Engineer position at our company. We're eager to find a candidate with your
startup experience and believe you could be a great fit. Could we arrange a short call to
discuss this further?\\n\\n\\nBest,Andreas",

},
{
"id": 5,

"type": "delay-step",
"delaySeconds": 432000

},
{
"id": 6,
"type": "message",
"channel": "GMAIL",
"subject_line": "Re: Open to new opportunities?",
"message": "Hi Milan,\\nHope you're well. I haven't heard back from you regarding

the Software Engineer position I messaged you about. We're finalizing our shortlist soon and
would love to include you. Are you available for a quick chat this week to discuss the
opportunity?\\n\\n\\nBest,Andreas",

},
]

}

Deliverables:

1. Wireframe: Overview of candidates for a role, and being able to see the campaign
state / progress. (Doesn’t need to be pixel perfect, just a rough sketch.)

2. Database Diagram
3. System Architecture: Components, tools, and services used.

1. Please list which frameworks, tools, services etc you’d like to use, if any.
4. System Flow: High-level process flow.

Considerations:

● 2, 3 and 4 are the most important, make sure you spend most time there.
● Speed and pragmatism are crucial; explain any scope reductions.
● Campaigns end automatically after 30 days or upon candidate response.
● Handle potential unavailability of communication channels.

Assumptions: You can assume everything that is not part of the system CampaignExecutor
is available (so you don’t have to focus on that part), for reference here are some endpoints
that may be useful to model your solution:

(There is an authentication header that identifies the user in the system)

GET /user/me → User

type User = {
id: number
firstName: string
lastName: string
email: string

}

●
● GET /role/:roleId -> Role

GET /role -> Role[]

type Role = {
id: number
title: string
description: string

}

●

GET /role/:roleId/candidate → Candidate[]

type Candidate = {
id: number
firstName: string
lastName: string
email: string | null
linkedin: string | null
cv: Resume

}

type Resume = unknown // structured CV

●
● GET /channel → Channel[]

○ Returns the connected channels of the user

type Channel = {
id: number
type: "EMAIL" | "LINKEDIN"
status: "OK" | "ERROR" | "ERROR_CREDENTIALS" // (the user got logged out of the

channel)
}

●

POST /channel/:channelId/chat/:candidateId/message

type PostMessageBody = {
body: string
subject: string | null

}

type PostMessage200Response = {
messageId: number

}

●

GET /channel/:channelId/chat/:candidateId/message → Message[]

type Message = {
id: number
from: number // candidateId or userId
to: number // candidateId or userId
subject: string | null
body: string
sentAt: Date | null
openedAt: Date | null

}

●

