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Introduction

Lactic acid fermentation of fruits and vegetables has been 
extensively studied over the last decades with fermented 
olives, cucumbers, kimchi and sauerkraut being in the epi-
center due to their commercial significance (Paramithiotis 
et al. 2017b).

An increased interest on indigenous fermented fruits 
and vegetables such as caper berries (Pulido et  al. 2005) 
cauliflower (Paramithiotis et  al. 2010), eggplant (Nguyen 
et  al. 2013), leek (Wouters et  al. 2013a), asparagus (Par-
amithiotis et  al. 2014a), green tomatoes (Paramithiotis 
et  al. 2014b) and turnips (Maifreni et  al. 2004) has taken 
place over the last decade in an attempt to characterize the 
micro-ecosystems, exploit their dynamics and improve our 
understanding on the factors that play decisive roles in their 
development.

Radish (Raphanus sativus L.) is a member of the Bras-
sicaceae family. Radish root is considered to possess high 
medicinal and nutritional value; it is rich in antioxidants, 
vitamin C, B-complex vitamins and minerals like calcium, 
phosphorus, potassium, magnesium etc. (Pushkala et  al. 
2013) and its consumption has been associated with posi-
tive effects on human health and is suggested as an alterna-
tive treatment for various illnessess such as hyperlipidemia, 
cancer and coronary heart diseases (Talalay and Fahey 
2001; Curtis 2003; Beevi et al. 2012). The health promot-
ing properties are mainly attributed to the presence of glu-
cosinolates and their degradation products such as isothio-
cyanates, but also to natural antioxidants like polyphenolic 
compounds as well as flavonoid and ascorbic acid (Beevi 
et al. 2012; Goyeneche et al. 2015).

Currently in Europe, radish roots are consumed raw as 
a part of fresh mixed salads, contributing their strong and 
unique flavor. On the other hand, in China, Japan and Korea 
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they are also consumed as an ingredient of lactic acid fer-
mented products such as Kimchi and Pao Cai (Yan et  al. 
2008; Patra et  al. 2016). Moreover, in India, Nepal, and 
Bhutan the consumption of Sinki, a product prepared by pit 
fermentation of radish roots, is quite common (Tamang and 
Sarkar 1993). In Greece, and more accurately in southern 
Attica, radish roots are very often subjected to lactic acid 
fermentation in brine, which is the most widespread type 
of fermentation in Greece, resulting in a product of unique 
sensorial properties. In that district, outdoor cultivation is 
possible throughout the year due to the mild climatic condi-
tions. Thus, the ambient temperatures in which the fermen-
tation takes place may extend from <20 to more than 30 °C. 
To the best of our knowledge, there is currently no litera-
ture available regarding the spontaneous brine fermenta-
tion of radish roots. Therefore, the aim of the present study 
was to monitor the microbial population dynamics during 
spontaneous fermentation of radish roots in brine, at 20 and 
30 °C and to taxonomically characterize the dominating 
lactic acid microbiota.

Materials and methods

Pickle preparation and sampling

Fermentation of radish (R. sativus L.) roots was performed 
according to a traditional recipe currently employed in 
southern Attica. 700 g (±5 g) were thoroughly washed with 
tap water, cut in half (approx. dimensions: height 2.0 cm, 
radius 1.5 cm) and submerged into 1.3 L of brine solution 
(5% NaCl w/v). The surface was covered with olive oil and 
the mixture left to ferment at 20 °C and at 30 °C for 17 and 
11 days, respectively. Brine sampling was performed in 
regular time intervals; the fermentation was considered as 
completed when pH and TTA values exhibited no statisti-
cally significant (P < 0.05) change between two consecutive 
samplings. Thus, brine samples were analyzed at days 0, 1, 
3, 5, 7, 11, 15 and 17 in the case of 20 °C and 0, 1, 3, 5, 7 
and 11 in the case of 30 °C. Fermentations were performed 
in duplicate and the average values are presented.

Physico‑chemical and microbiological analyses

Brine pH value and total titratable acidity (TTA) were used 
to monitor fermentation. Brine samples (10 mL) were asep-
tically derived from each fermentation jar and the pH value 
was recorded (WTW, Weilheim, Germany). Then, homog-
enization with 90  mL of distilled water took place using 
a Stomacher apparatus (Seward, London, UK). The acid-
ity was titrated using 0.1 N NaOH to a final pH of 8.5 and 
the TTA was expressed in % lactic acid (%LA = mL 0.1 N 
NaOH used to titrate 10  mL sample multiplied by 0.09). 

All analyses were performed in triplicate and the average 
values are presented.

Microbiological analyses were performed in the brine 
samples (10  mL) throughout fermentation. Total aerobic 
mesophilic count, lactic acid bacteria, yeasts/molds, entero-
cocci, Staphylococcus aureus, sulphur-reducing clostridia, 
Escherichia coli, Enterobacteriaceae and pseudomonads 
as well as qualitative and quantitative determination of Lis-
teria monocytogenes and Salmonella spp. were performed 
according to Paramithiotis et al. (2010). In brief, brine sam-
ples (10 mL) were homogenized with sterile saline (90 mL) 
containing 0.1% peptone (Merck, Darmstadt, Germany) 
and 0.85% NaCl (Merck) using a Stomacher apparatus. 
Serial dilutions were performed in sterile Ringer solution 
(LAB M, Lancashire, UK). Total aerobic mesophilic count, 
yeasts/molds, enterococci, pseudomonads and St. aureus 
determination was carried out by spreading 0.1 mL of the 
diluted sample to the surface of Plate Count Agar (LAB 
M), Rose Bengal Chloramphenicol Agar (LAB M), Kana-
mycin Aesculin Azide Agar (LAB M), Pseudomonas Agar 
base supplemented with Cephalothin, Fucidin and Cetrim-
ide (LAB M) and Baird-Parker selective agar (LAB M) and 
incubating at 30 °C for 48 h, 25 °C for 5 days, 35 °C for 3 
days, 25 °C for 48  h and 35 °C for 24–48  h, respectively. 
The enumeration limit was 2 log CFU/mL. Enterobacte-
riaceae and E. coli determination was performed by pour-
ing 1 mL of the diluted sample in Violet Red Bile Glycose 
Agar (LAB M) and  Chromocult® TBX agar (Merck) and 
incubation at 35 °C for 24 h. The enumeration limit was 1 
log CFU/mL. Enumeration of sulphur-reducing clostridia 
took place by pouring 10 mL aliquots in 20 mL of molten 
Sulfite Polymyxin Sulfadiazine agar (Merck) and overlay 
with 5 mL of sterile paraffin after solidification. Incubation 
was carried out at 35 °C for 24  h. The enumeration limit 
was 1 CFU/mL. Qualitative and quantitative determination 
of L. monocytogenes and Salmonella spp. were performed 
according to ISO 11290-1:1996 and ISO 11290-2:1998 in 
the first case and ISO 6579:2002 and ISO/TS 6579-2:2012 
in the second case, respectively. The enumeration limit 
in both cases was 2 log CFU/mL. All analyses were per-
formed in duplicate and the average values are presented.

Isolation and identification of lactic acid bacteria

Lactic acid bacteria were isolated throughout fermentation 
with the exception of days 0 and 1. Selection of the colo-
nies was performed according to the representative sam-
pling scheme of Harrigan and McCance (1976), purifica-
tion was performed by successive sub-culturing on MRS 
agar and incubation at 30 °C for 48 h. Gram stain and cata-
lase reactions were performed for confirmation.

Clustering of the LAB was performed by ran-
dom amplified polymorphic DNA–polymerase chain 
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reaction (RAPD-PCR) with M13 as primer and repeti-
tive sequence-based PCR (rep-PCR) with (GTG)5 as 
primer, as described by Paramithiotis et  al. (2014a, b). 
Electrophoresis was performed in 1.5% agarose gel in 
1.0 × Tris–Acetate EDTA (TAE) at 100 V for 1.5 h with 
concomitant visualization by ethidium bromide staining. 
Gels were photographed using the GelDoc system (Bio-
Rad, Hercules, CA, USA); conversion, normalization 
and further analysis were performed with Bionumerics 
software v. 6.1 (Applied Maths NV, Sint-Martens-Latem, 
Belgium) using the Dice coefficient and the unweighted 
pair group method with arithmetic mean (UPGMA) clus-
ter analysis. Strains were subjected to each analysis at 
least twice.

One to three representative strains from each cluster 
were subjected to 16S rRNA gene sequencing accord-
ing to Cocolin et  al. (2004) for taxonomic assignment. 
Sequences were aligned with those in GenBank using 
the BLAST program to determine the closest known 
relatives.

Analysis of metabolites

Carbon sources (glucose and fructose) and metabolites 
(lactic acid, acetic acid, ethanol, glycerol) were deter-
mined in brine samples by high-performance liquid 
chromatography according to Paramithiotis et al. (2006).

Statistical analysis

One-way analysis of variance (ANOVA) (MS Excel, 2010) 
was used to statistically assess the differences between 
pH, TTA and microbial population dynamics during spon-
taneous fermentation of radish roots at 20 and 30 °C. The 
Simpson’s discrimination (D) index was used to determine 
the discrimination power of the typing methods applied 
(Hunter and Gaston 1988).

Results

In Table  1, the physico-chemical and microbiological 
changes during spontaneous fermentation of radish roots at 
20 and 30 °C are shown. The initial pH values were 7.04 
and 6.95 and decreased to 3.62 and 3.60, respectively. The 
initial TTA was 0.01%LA in both cases and increased to 
0.40 and 0.35%LA, respectively. Brine acidification was 
faster at 30 °C. Indeed, during the third and fifth days of 
fermentation at 30 °C the pH value was significantly 
(P < 0.05) lower than the respective at 20 °C (Table 1). In 
addition, TTA was significantly higher during the third day 
of fermentation at 30 °C.

Pseudomonads, Enterobacteriaceae and yeasts/molds 
were enumerated already from the beginning of fermen-
tation (day 0) in both temperatures. On the contrary, lac-
tic acid bacteria, enterococci, St. aureus, sulphur-reduc-
ing clostridia, E. coli, L. monocytogenes and Salmonella 

Table 1  Physico-chemical and microbiological changes during spontaneous fermentation of radish roots at 20 and 30 °C

Microbial populations are presented in log CFU/mL; standard deviation is given in parenthesis
In each column, different superscript letters denote significant differences between the same sampling days of fermentation at 20 and 30 °C
TAMC total aerobic mesophilic count, LAB lactic acid bacteria

Day pH TTA (%LA) TAMC LAB Pseudomonads Enterobacteriaceae Yeasts/molds Enterococci

Fermentation at 20 °C
 0 7.04 (0.24)a 0.01 (0.01)a 5.78 (0.44)a <1.00 4.78 (0.36)a 2.52 (0.32)a 4.00 (0.35)a <2.00
 1 6.51 (0.32)a 0.01 (0.01)a 5.77 (0.58)a <1.00 5.12 (0.37)a 2.70 (0.22)a 3.85 (0.22)a <2.00
 3 5.86 (0.12)a 0.04 (0.01)a 6.37 (0.64)a 5.12 (0.38)a 4.70 (0.36)a 4.20 (0.43)a 3.80 (0.34)a 3.28 (0.36)a

 5 4.12 (0.17)a 0.17 (0.02)a 6.45 (0.41)a 7.07 (0.42)a 4.48 (0.45)a 3.70 (0.33)a 3.68 (0.24)a 3.90 (0.43)a

 7 3.78 (0.15)a 0.26 (0.11)a 7.69 (0.48)a 7.71 (0.34)a 4.39 (0.57) 3.97 (4.12) 4.35 (0.57)a 4.82 (0.40)a

 11 3.68 (0.19)a 0.28 (0.04)a 6.81 (0.47)a 6.90 (0.28)a 3.36 (0.52) <1.00 3.57 (0.48)a 5.72 (0.52)a

 15 3.60 (0.05) 0.41 (0.01) 6.56 (0.54) 6.54 (0.42) <2.00 <1.00 <2.00 5.13 (0.25)
 17 3.62 (0.07) 0.40 (0.01) 6.40 (0.42) 6.31 (0.31) <2.00 <1.00 <2.00 5.26 (0.23)

Fermentation at 30 °C
 0 6.95 (0.20)a 0.01 (0.01)a 5.54 (0.48)a <1.00 4.78 (0.42)a 2.58 (0.35)a 4.24 (0.57)a <2.00
 1 6.44 (0.30)a 0.02 (0.01)a 5.96 (0.44)a 4.90 (0.37) 5.38 (0.46)a 3.46 (0.51)a 2.85 (0.33)a 3.42 (0.54)
 3 4.46 (0.17)b 0.09 (0.01)b 6.87 (0.23)a 7.73 (0.42)b 4.85 (0.42)a 2.95 (0.38)a 2.69 (0.43)a 3.08 (0.36)a

 5 3.68 (0.23)a 0.28 (0.10)a 7.76 (0.62)a 7.78 (0.43)a 3.48 (0.32)a 2.48 (0.24)b 3.12 (0.55)a 3.70 (0.50)a

 7 3.53(0.22)a 0.34 (0.02)a 7.79 (0.51)a 7.63 (0.54)a <2.00 <1.00 2.60 (0.40)a 3.70 (0.41)a

 11 3.60 (0.07)a 0.35 (0.03)a 6.84 (0.42)a 6.71 (0.47)a <2.00 <1.00 2.48 (0.36)a 3.85 (0.43)a
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sp. were below enumeration limit. Lactic acid bacteria 
population was detectable from the third and first day of 
fermentation and increased until the seventh and third 
day of fermentation, at 20 and 30 °C, respectively, reach-
ing approximately 7.70 log CFU/mL in both cases. Then 
a reduction in the population to 6.31 and 6.71 CFU/mL, 
respectively, took place at the end of fermentation.

Pseudomonads population remained without statisti-
cally significant change for 7 and 3 days of fermentation 
at 20 and 30 °C, respectively. Then, it diminished and was 
below enumeration limit during the 15th and seventh days 
of fermentation at 20 and 30 °C, respectively. Enterobacte-
riaceae population increased at the beginning of fermen-
tation and reached 4.20 and 3.46 log CFU/mL during the 
third and first days of fermentation at 20 and 30 °C, respec-
tively. Then, the population was reduced and was below 
enumeration limit during the 11th and the seventh days of 
fermentation at 20 and 30 °C, respectively. Τhe population 
of yeasts/molds remained stable at approximately 4.00 log 
CFU/mL during the first 11 days of spontaneous fermen-
tation at 20 °C but then reduced below enumeration limit 
until the end. On the contrary, during fermentation at 30 °C, 
yeasts/molds population remained between 2.48 and 3.12 
log CFU/mL, slightly reduced from the initial 4.24 log 
CFU/mL. St. aureus, sulphur-reducing clostridia, E. coli, 
L. monocytogenes and Salmonella sp. remained below enu-
meration limit throughout fermentation. Absence of the last 
two foodborne pathogens was also verified.

The carbon sources detected during spontaneous fer-
mentation of radish roots were glucose and fructose 
(Table 2); their initial concentration ranged from 1.92 to 
2.08  mM and from 0.68 to 0.84  mM, respectively. Dur-
ing fermentation at 20 °C their concentration ranged from 
2.36 to 4.72 mM and from 0.65 to 1.18 mM, respectively, 
with the exception of day 17 in which they were reduced 
to 0.68 and 0.54 mM, respectively. During fermentation 
at 30 °C, glucose ranged from 3.49 to 3.95  mM during 
the first 5 days, reduced to 0.17  mM in day 7 and was 
not detected in day 11. Fructose ranged from 0.65 to 
1.29 during the first 5 days and was not detected in days 
7 and 11. Lactic acid, acetic acid and ethanol were the 
metabolites detected (Table  2); at the end of fermenta-
tion at 20 °C they reached 42.01, 5.02 and 16.18  mM, 
respectively, while at the end of fermentation at 30 °C 
they reached 38.78, 3.29 and 18.39  mM, respectively. 
On the contrary, glycerol was not detected throughout 
fermentation.

A total of 230 lactic acid bacteria isolates were 
obtained throughout the study, subjected to RAPD and 
rep-PCR analyses and effectively separated into many 
clusters (Fig.  1). Representative strains from each clus-
ter were subjected to sequencing of their 16S-rRNA gene 
and the resulting phylogenetic affiliation is exhibited 
in Table  3. The majority of the isolates, i.e. 135 were 
assigned to Lactobacillus plantarum, 77 to Pediococcus 
pentosaceus and 18 to Lactobacillus brevis.

Table 2  Carbon sources 
consumption and metabolite 
production during spontaneous 
fermentation of radish roots at 
20 and 30 °C

In each column, different superscript letters denote significant differences between the same sampling days 
of fermentation at 20 and 30 °C
nd not detected

Day Carbon sources Metabolites

Glucose Fructose Lactic acid Acetic acid Ethanol

Fermentation at 20 °C
 0 1.92 (0.30)a 0.84 (0.23)a nd nd nd
 1 2.57 (0.42)a 1.18 (0.31)a nd nd nd
 3 2.36 (0.36)a 0.82 (0.15)a 5.23 (1.32)a nd nd
 5 3.92 (0.85)a 0.87 (0.28)a 11.47 (2.52)a nd 3.25 (0.61)a

 7 4.72 (0.79)a 0.93 (0.36) 23.35 (2.74)a nd 13.01 (1.35)a

 11 3.57 (0.33) 0.65 (0.17) 34.49 (1.33)a 1.28 (0.33)a 14.34 (1.47)a

 15 3.61 (0.72) 0.67 (0.22) 36.54 (1.68) 3.87 (0.41) 15.01 (1.08)
 17 0.68 (0.22) 0.54 (0.21) 42.01 (2.31) 5.02 (1.06) 16.18 (1.27)

Fermentation at 30 °C
 0 2.08 (0.35)a 0.68 (0.27)a nd nd nd
 1 3.95 (0.72)a 1.29 (0.32)a 0.34 (0.12) nd nd
 3 3.81 (0.65)a 0.54 (0.27)a 12.14 (1.69)b 1.87 (0.20) 4.34 (0.42)
 5 3.49 (0.34)a 0.65 (0.16)a 22.27 (2.44)b 1.93 (0.48) 14.22 (1.58)b

 7 0.17 (0.05)b nd 34.28 (3.04)a 2.50 (0.41) 16.32 (1.75)a

 11 nd nd 38.78 (2.36)a 3.29 (0.55)a 18.39 (1.63)a
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In Table 4, the Simpson’s index of diversity of the typing 
techniques applied is shown. rep-PCR resulted in optimal 
differentiation; isolates assigned to the same species pro-
duced several similar but not identical genotypic profiles, 
therefore the Simpson’s index was 1. On the contrary, sev-
eral identical genotypic profiles were generated by RAPD-
PCR analysis and thus the Simpson’s index was <1.

In Fig. 2, the population dynamics during the sponta-
neous radish fermentation at 20 and 30 °C is presented. In 

both temperatures Pd. pentosaceus prevailed the micro-
ecosystem during the first days of fermentation. Then 
domination of Lb. plantarum was observed during the 
seventh day of fermentation at 20 °C and the fifth day of 
fermentation at 30 °C. Finally, Lb. brevis was detected 
during the final day (17th) of fermentation at 20 °C and 
during the seventh and 11th days of fermentation at 
30 °C.

Fig. 1  Cluster analysis of rep-
PCR and RAPD-PCR patterns 
of LAB isolates. Distance is 
indicated by the mean cor-
relation coefficient [r (%)] 
and clustering was performed 
by UPGMA analysis. Strain 
origin is indicated by the Latin 
numerals; the first indicates the 
fermentation temperature (20: 
fermentation at 20 °C; 30: fer-
mentation at 30 °C), the second 
the day of isolation (d1–d17) 
and the third the isolate number. 
Representative strains selected 
for 16S-rRNA sequencing are 
marked in bold. Latin numerals 
designate lactic acid bacteria 
species (I: Lb. plantarum, II: 
Lb. brevis, III: Pd. pentosaceus)
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Discussion

The factors that determine the outcome of spontaneous fer-
mentation of fruits and vegetables include abiotic, such as 
pH value, salt concentration and temperature, and biotic 
ones, such as the indigenous micro-communities of the 
raw materials. In the case of fresh fruits and vegetables, 
yeasts/molds and Gram-negative aerobic bacteria have been 
reported to dominate the micro-ecosystem (Harris 1998; 
Paramithiotis et  al. 2017a). This was also the case in the 
present study and was reflected in the composition of the 
micro-ecosystem during day 0, i.e. upon placing of the rad-
ish roots in the brine solution.

As fermentation proceeds, lactic acid bacteria popula-
tion increases from as low as 2 log CFU/mL or even below 
enumeration limit, as in the case of the present study, to 
7–9 log CFU/mL, due to their metabolic capacity, domi-
nating thus the microecosystem (Sesena and Palop 2007; 
Wouters et  al. 2013a). As a result, pH value is reduced 
and acidity is developed. At the same time the remaining 
microbial populations diminish due to the effect of pH, 

acidity and antagonism for nutrients (Pulido et  al. 2005; 
Paramithiotis et al. 2010, 2014a, b; Wouters et al. 2013a, b; 
Maifreni et al. 2004). This was also the case in the present 

Table 3  Phylogenetic affiliation 
of selected strains based on 
sequencing of the 16S-rRNA 
gene

Strain number Closest relative Query cover 
(%)

Identity (%) Accession number

20.d11.10 Lactobacillus plantarum 98 99 KX388384
20.d11.17 Lactobacillus plantarum 98 99 KX388384
20.d11.18 Lactobacillus plantarum 99 99 AB973176
20.d15.12 Lactobacillus plantarum 98 99 KP317711
20.d15.17 Lactobacillus plantarum 98 99 KX388384
20.d15.4 Lactobacillus plantarum 98 99 KX388384
20.d7.2 Lactobacillus plantarum 98 99 KP317711
30.d11.20 Lactobacillus plantarum 98 99 KF806536
30.d5.3 Lactobacillus plantarum 98 99 KP388384
20.d7.17 Pediococcus pentosaceus 99 100 KU933533
30.d1.1 Pediococcus pentosaceus 98 99 KX377684
30.d1.10 Pediococcus pentosaceus 99 100 KU933533
30.d3.12 Pediococcus pentosaceus 99 99 KU933533
30.d3.17 Pediococcus pentosaceus 98 99 KX377684
20.d17.10 Lactobacillus brevis 97 99 KU746859
20.d17.4 Lactobacillus brevis 97 99 KU746859
30.d11.6 Lactobacillus brevis 99 99 KX000271

Table 4  Simpson’s index of diversity of the genotyping techniques 
applied

Species Number of 
isolates

Method

RAPD-PCR rep-PCR

Lactobacillus plantarum 135 0.992 1
Pediococcus pentosaceus 77 0.941 1
Lactobacillus brevis 18 0.967 1

Fig. 2  Population dynamics of Lb. plantarum (white bars), Pd. 
pentosaceus (light grey bars) and Lb. brevis (dark grey bars) during 
spontaneous fermentation of radish roots at 20 °C (upper graph) and 
30 °C (lower graph)
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study. The final pH and TTA values ranged within the ones 
usually observed in such fermentations and were justified 
by the population of the lactic acid bacteria (Paramithiotis 
et  al. 2017b) At higher fermentation temperature (30 °C), 
faster reduction of the pH value and development of acidity 
were observed, most likely due to the faster development 
of the lactic acid microbiota, which concomitantly resulted 
in faster reduction of pseudomonads, Enterobacteriaceae 
and yeasts/molds population. On the contrary, enterococci 
population remained at the level of 3–5 log CFU/mL due to 
their tolerance to acidic conditions that has been adequately 
exhibited (Fisher and Phillips 2009).

Glucose and fructose were the main carbohydrates 
detected during fermentation, in accordance to the litera-
ture (Masalkar and Keskar 1998). The end-products of their 
catabolism were lactic acid, acetic acid and ethanol. Pro-
duction of lactic acid may be assigned to homofermenta-
tive metabolism by lactic acid bacteria and accumulation of 
acetic acid and ethanol to heterofermentative catabolism by 
lactic acid bacteria as well as yeasts.

The structure and dynamics of the lactic acid bacteria 
microcommunity was monitored with RAPD and rep-PCR, 
an approach commonly applied in similar studies. The for-
mer has been extensively used for clustering and differenti-
ation of LAB from a variety of sources (Fontana et al. 2005; 
Rossetti and Giraffa 2005; Banwo et al. 2012) whereas rep-
PCR with (GTG)5 as primer is currently well-known for the 
discriminatory efficiency at sub-species level (Gevers et al. 
2001). 16S rRNA gene sequencing has been extensively 
used in phylogenetic studies. However, differentiation of 
closely related species cannot be reliably achieved though 
sequencing of such a highly conserved genomic region. 
This is the case of the Lb. plantarum group. This group 
includes six species, namely Lb. plantarum, Lactobacil-
lus pentosus, Lactobacillus paraplantarum, Lactobacillus 
fabifermentans, Lactobacillus xiangfangensis and Lactoba-
cillus mudanjiangensis (Gu et al. 2013). In order to accu-
rately assign the phylogenetic affiliation of an isolate within 
this group, several protocols based on specific PCR have 
been proposed; with the one developed by Huang et  al. 
(2016) being the latest. In the present study, no such proto-
col was applied, thus it would be more accurate to refer to 
these strains as belonging to Lb. plantarum-group instead 
of belonging to Lb. plantarum species that was the closest 
relative in all cases.

At species level, a rather limited LAB biodiversity was 
revealed during this study. Lb. plantarum, Lb. brevis and 
Pd. pentosaceus are among the species that immensely 
contribute in the fermentation of several fruits and vegeta-
bles such as cucumber (Singh and Ramesh 2008), eggplant 
(Nguyen et  al. 2013), caper berries (Pulido et  al. 2005) 
cauliflower (Wouters et  al. 2013b), suan-tsai (Chao et  al. 
2009), sauerkraut (Barrangou et al. 2002; Plengvidhya et al. 

2007; Wiander 2017) and kimchi (Cho et al. 2006; Kim and 
Chun 2005; Lee et  al. 2005; Park et  al. 2003). Moreover, 
Lb. plantarum and Lb. brevis have been reported to domi-
nate several fermentations including cucumber (Tamang 
et  al. 2005), Almagro eggplant (Sesena and Palop 2007) 
and inziangsang (Tamang et al. 2005) whereas Pd. pentosa-
ceus has been reported to prevail in Suan-tsai fermentation 
(Chen et al. 2006). This was also the case of sinki, a prod-
uct prepared by pit fermentation of radish roots. Tamang 
and Sarkar (1993) reported that Lb. fermentum initiated the 
fermentation and substituted sequentially by Lb. brevis and 
Lb. plantarum. On the other hand, Tamang et  al. (2005) 
analyzed 12 sinki samples and isolated Lb. brevis and Leu-
conostoc fallax. Generally, Lb. plantarum is mostly asso-
ciated with the final stages of fermentation, mostly due to 
the large metabolic capacity that distinguishes it (Daeschel 
et al. 1987). On the other hand, occurrence of Pd. pentosa-
ceus and Lb. brevis in such fermentations is mostly associ-
ated with their ability to grow under stressful conditions. 
The fermentation temperature had no effect on the com-
position of the lactic acid microecosystem; nonetheless it 
accelerated the succession at species level.

The commonly reported succession at species level 
(Paramithiotis et al. 2010, 2014a, b; Wouters et al. 2013a; 
Chao et  al. 2009; Plengvidhya et  al. 2007; Cho et  al. 
2006; Lee et al. 2005; Sesena and Palop 2007; Yeun et al. 
2013; Chang et  al. 2008) that was observed in the pre-
sent study was accompanied by a respective at subspecies 
level. The latter is also frequently reported when a com-
bination of typing techniques is applied (Paramithiotis 
et al. 2014a, b) providing with an insight to the develop-
ment of the respective spontaneous micro-ecosystem.

Over-viewing the results obtained in the present study, 
LAB dominate spontaneous fermentation of radish roots. 
Fermentation was driven by Pd. pentosaceus during the 
first days and Lb. plantarum during the rest of fermenta-
tion. Lb. brevis was also detected during the final days 
of fermentation. A succession at sub-species level took 
place in parallel to the respective at species level.
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