CS 703
Advanced Database Systems

GLOBAL
EDITION

) : : - Fundamentals of
Chapter 12: Object and Object-Relational L

Databases Part |

Copyright © 2017 Ramez Elmasri and Shamkant B. Navathe

Introduction

» Weak Points of the Relational Model:
1. Efficiency
¢ information retrieved by addressing multiple tables (join operation is very slow)
2. Data semantics
e the relational model lacks semantics
— cannot distinguish between different types of relationships (association, aggregation, specialization)
—a column can be either attribute or relationship.
3. Model extension

e relations cannot be used as built-in data types (1-NF prevents nested relations)

(a)
EMP_PROJ Projs
[Ssn] Ename Pnumber] Hours
(b)
EMP_PROJ
Ssn Ename Pnumber Hours
123456789 Smith, John B. 1 32.5

2 7.5
666884444 | Narayan, Ramesh K.| ¢ s |40
453253453 | English, Joyce A. | 1 | 200
____________________________ 2 _ _{=20 ________|
333445555 Wong, Franklin T. 2 10.0

3 10.0

10 10.0
Lol v ol 20 LAO0L]
999887777 Zelaya, Alicia J. 30 30.0
S P S N | S
987987987 Jabbar, Ahmad V. 10 35.0

30 5.0
(087654321 | Wallace, Jennifer S. | 30 | =200
- 1___20_ _ {150
888665555 Borg, James E. 20 NULL Sllde 12_ 3

Introduction

e \Weak Points of the Relational Model:
4. Program interface and impendence mismatch problem
e differences between the database model and the programming language model.

e mismatch in the data types supported by the two systems. More on impedance mismatch (Section 10.1.2)

» Binding for each host programming language that specifies for each attribute type the compatible programming
language types. A different binding is needed for each programming language because different languages have
different data types.

* Another problem occurs because the results of most queries are sets or multisets of tuples (rows), and each
tuple is formed of a sequence of attribute values. In the program, it is often necessary to access the individual
data values within individual tuples for printing or processing. Hence, a binding is needed to map the query
result data structure, which is a table, to an appropriate data structure in the programming language. A
mechanism is needed to loop over the tuples in a query result in order to access a single tuple at a time and to
extract individual values from the tuple. The extracted attribute values are typically copied to appropriate
program variables for further processing by the program.

Or

» Special database programming language is designed that uses the same data model and data types as the
database Model such as PL\SQL or SQL\PSM.

The object data model is quite similar to the data model of the Java programming language, so the impedance mismatch is
greatly reduced when Java is used as the host language for accessing a Java-compatible object database.

Slide 12- 3

Introduction

* Object databases (ODB)

Reason for the creation of object-oriented databases is the vast increase in the use of object-oriented
programming languages for developing software applications.

Meet some of the needs of more complex applications (CAD\CAM, biological and other sciences,
telecommunications, geographic information systems, and multimedia).

Object-oriented databases have adopted many of the concepts that were developed originally for object-oriented
programming languages.

Specify:
* Structure of complex objects
* Operations that can be applied to these objects

These include object identity, object structure and type constructors, encapsulation of operations, and the
definition of methods as part of class declarations, mechanisms for storing objects in a database by making them
persistent, and type and class hierarchies and inheritance.

* Relational DBMS (RDBMS) vendors have also recognized the need for incorporating features that were proposed for
object databases, and newer versions of relational systems have incorporated many of these features.

* This has led to database systems that are characterized as object-relational or ORDBVIs.

Slide 12- 3

Overview of Object Database
Concepts

Slide 8- 5

Introduction to Object-Oriented Concepts and Features

* Origins in OOPL

* An object typically has two components: state (value) and behavior (operations). It can have a complex data structure as well as
specific operations defined by the programmer.

* Objects in an OOPL exist only during program execution; therefore, they are called transient objects. An OO database can extend
the existence of objects so that they are stored permanently in a database, and hence the objects become persistent objects that
exist beyond program termination and can be retrieved later and shared by other programs.

* The internal structure of an object in OOPLs includes the specification of instance variables, which hold the values that define the
internal state of the object. An instance variable is similar to the concept of an attribute in the relational model, except that
instance variables may be encapsulated within the object and thus are not necessarily visible to external users. Instance variables
may also be of arbitrarily complex data types.

* Object-oriented systems allow definition of the operations or functions (behavior) that can be applied to objects of a particular
type.

— the object behavior ...
* methods (operations) that can be executed to
— create/destroy an object
— update an object state
— retrieve object state
— compute new values based on object state
e the names and parameters of methods

— define the object interface

Slide 12- 5

Introduction to Object-Oriented Concepts and Features

* Inheritance

o Permits specification of new types or classes that inherit much of their structure and/or operations from previously defined
types or classes. This makes it easier to develop the data types of a system incrementally and to reuse existing type definitions
when creating new types of objects.

* Operator overloading (polymorphism)
o Operation’s ability to be applied to different types of objects
o Operation name may refer to several distinct implementations
o For example, an operation to calculate the area of a geometric object may differ in its method (implementation), depending
on whether the object is of type triangle, circle, or rectangle.
* The concept of encapsulation is one of the main characteristics of OO languages and systems. It is also related to the concepts of
abstract data types and information hiding in programming languages.
* Define behavior of a class of object based on operations that can be externally applied
* External users only aware of interface of the operations

* Can divide structure of object into visible and hidden attributes

Slide 12- 5

Overview of Object Database Concepts

--The object identifier (OID)
* Is a unique system-wide identifier. Every object must have an object identifier.

* Object has Unique identity
* Implemented via a unique, system-generated object identifier (OID)

* Not visible to the user but is used internally by the system to identify each object uniquely and to create and
manage interobject references.

* Immutable (unchangeable for the same object and is not assigned to other objects).

* OIDs does not depend on attribute values.))
RDB: each relation must have a primary key

attribute whose value identifies each tuple
uniquely. If the value of the primary key is
changed, the tuple will have a new identity,

* Some early OO data models required that everything—from a simple value to a complex object—was represented as
an object; hence, every basic value, such as an integer, string, or Boolean value, has an OID. Although useful as a
theoretical model, this is not very practical, since it leads to the generation of too many OIDs.

* Hence, most ODBs allow for the representation of both objects and literals (or values). Every object must have an
immutable OID, whereas a literal value has no OID and its value just stands for itself. Thus, a literal value is typically
stored within an object and cannot be referenced from other objects.

* In many systems, complex structured literal values can also be created without having a corresponding OID if needed.

Slide 12- 5

Objects versus Literals

* Most OO database systems allow for the representation of both objects and literals (simple or complex values)

* Objects and literals are the basic building blocks of the object model. The main difference between the two is that an
object has both an object identifier and a state (or current value), whereas a literal has a value (state) but no object

identifier.

* In either case, the value can have a complex structure.

Slide 12- 6

Complex Type Structures for Objects and Literals

* Structure of arbitrary complexity RDB: Information about a complex data structure is
 Contain all necessary information that describes object or literal ~ often scattered over many relations or records,
leading to loss of direct correspondence between a
real-world object and its database representation.

* A complex type may be constructed from other types by nesting of type constructors. The three most basic constructors are
atom, struct (or tuple), and collection.

1. One type constructor has been called the atom constructor. This includes the basic built-in data types of the object model,
which are similar to the basic types in many programming languages: integers, strings, floating-point numbers, Booleans,
and so on. These basic data types are called single valued or atomic types, since each value of the type is considered an
atomic (indivisible) single value.

2. Asecond type constructor is referred to as the struct (or tuple) constructor. This can create standard structured types, such
as the tuples (record types) in the basic relational model. A structured type is made up of several components and is also
sometimes referred to as a compound or composite type.

For example, two different structured types that can be created are:
struct Name<FirstName: string, Middlelnitial: char, LastName: string>

struct CollegeDegree<Major: string, Degree: string, Year: date>.

RDB: the type constructors atom and struct are the
only ones available in the original (basic) relational
model.

Slide 12- 7

Complex Type Structures for Objects and Literals

3. To create complex nested type structures in the object model, the collection type constructors are needed.

Collection (or multivalued) type constructors include the set(T), list(T), bag(T), array(T), and dictionary(K,T) type
constructors. These allow part of an object or literal value to include a collection of other objects or values when needed.
These constructors are also considered to be type generators because many different types can be created. For example,
set(string), set(integer), and set(Employee) are three different types that can be created from the set type constructor. All
the elements in a particular collection value must be of the same type. For example, all values in a collection of type
set(string) must be string values.

* Collection types:

set constructor will create objects or literals that are a set of distinct elements {i1, i2,... ,in}, all of the same type.
The bag constructor (also called a multiset) is similar to a set except that the elements in a bag need not be distinct.

The list constructor will create an ordered list [i1, i2, ..., in] of OIDs or values of the same type. A list is similar to a
bag except that the elements in a list are ordered, and hence we can refer to the first, second, or jth element.

The array constructor creates a single-dimensional array of elements of the same type. The main difference
between array and list is that a list can have an arbitrary number of elements whereas an array typically has a
maximum size.

Finally, the dictionary constructor creates a collection of key-value pairs (K, V), where the value of a key K can be
used to retrieve the corresponding value V.

Slide 12- 8

Encapsulation of Object Attributes

RDB: Attributes are visible to users and
applications according to the predefined external
view.

Divide the structure of an object into visible and hidden attributes (instance variables).

Visible attributes can be seen by and are directly accessible to the database users and programmers via the query
language.

The hidden attributes of an object are completely encapsulated and can be accessed only through predefined operations.
Most ODMSs employ high-level query languages for accessing visible attributes

The term class is often used to refer to a type definition, along with the definitions of the operations for that type.

Slide 12- 12

Encapsulation of Operations

* The concept of encapsulation is applied to database objects in ODBs by
defining the behavior of a type of object based on the operations that can be

Externally applied to objects of that type.

Typical operations include:

* Constructor operation
* Used to create a new object

* Destructor operation
* Used to destroy (delete) an object

* Modifier operations

* Modify the state of an object
* Retrieve operation
* Retrieve parts of the object state

* Dot notation to apply operations to object

RDB: Operations are generic and visible to users
and applications. The operations for selecting,
inserting, deleting, and modifying tuples are
generic and may be applied to any relation in
the database. The relation and its attributes
are visible to users and to external programs
that access the relation by using these
operations.

* An operation is typically applied to an object by using the dot notation. For example, if d is a reference to a
DEPARTMENT object, we can invoke an operation such as no_of emps by writing d.no_of _emps. Similarly, by

writing d.destroy_dept, the object referenced by d is destroyed (deleted).

* The external users of the object are only made aware of the interface of the operations, which defines the name and
arguments (parameters) of each operation. The implementation is hidden from the external users.

Slide 12- 12

Persistence of Objects

* Transient objects: Exist in executing program. Disappear once program
terminates

* Persistent objects: Stored in database, persist after program
termination

* The typical mechanisms for making an object persistent are naming
and reachability.

* Naming mechanism: object assigned a unique name in object base,
user finds object by its name through which users and applications
can start their database access

* Reachability: object referenced from other persistent objects,
object located through references. An object B is said to be
reachable from an object A if a sequence of references in the
database lead from object A to object B.

RDB: all objects are assumed to be persistent.
Hence, when a table such as EMPLOYEE is created
in a relational database, it represents both the type
declaration for EMPLOYEE and a persistent set

of all EMPLOYEE records (tuples).

* Inthe OO approach, a class declaration of EMPLOYEE specifies only the type and

operations for a class of objects. The user must separately define a persistent

object of type set(EMPLOYEE) whose value is the collection of references (OIDs) to

all persistent EMPLOYEE obijects, if this is desired

* The ODMG ODL standard gives the schema designer the option of naming an

extent as part of class definition.

Slide 12- 13

Type (Class) Hierarchies and Inheritance (cont’d.)

* Inheritance
* Definition of new types based on other predefined types
* Leads to type (or class) hierarchy

* Subtype
* Useful when creating a new type that is similar but not identical to an already defined type
* Subtype inherits functions

* Additional (local or specific) functions in subtype

Slide 12- 16

Other Object-Oriented Concepts

* Polymorphism of operations
* Also known as operator overloading
* Allows same operator name or symbol to be bound to two or more different implementations

* Type of objects determines which operator is applied

* Multiple inheritance
* Subtype inherits functions (attributes and operations) of more than one supertype
* Example: subtype ENGINEERING_MANAGER that is a subtype of both MANAGER and ENGINEER.

Slide 12- 18

Summary of Object Database Concepts

® Object identity. Objects have unique identities that are independent of their
attribute values and are generated by the ODB system.

B Type constructors. Complex object structures can be constructed by apply-
ing in a nested manner a set of basic type generators/constructors, such as
tuple, set, list, array, and bag.

® Encapsulation of operations. Both the object structure and the operations that
can be applied to individual objects are included in the class/type definitions.

® Programming language compatibility. Both persistent and transient objects
are handled seamlessly. Objects are made persistent by being reachable from

a persistent collection (extent) or by explicit naming (assigning a unique
name by which the object can be referenced/retrieved).

® Type hierarchies and inheritance. Object types can be specified by using a
type hierarchy, which allows the inheritance of both attributes and methods
(operations) of previously defined types. Multiple inheritance is allowed in
some models.

= Extents. All persistent objects of a particular class/type C can be stored in an
extent, which is a named persistent object of type set(C). Extents corre-
sponding to a type hierarchy have set/subset constraints enforced on their
collections of persistent objects.

® Polymorphism and operator overloading. Operations and method names
can be overloaded to apply to different object types with different imple-
mentations.

Slide 12- 19

Object-Relational Features:
Object DB Extensions to
SQL

Slide 8- 18

Object-Relational Features: Object DB Extensions to SQL

» Type constructors (generators)
» Specify complex types using user defined types UDT such as row type, array types, set, list and bag.

* Mechanism for specifying object identity using reference type operator.

» Encapsulation of operations

» Provided through user-defined types (UDTSs) that may include operations as part of their declaration. In addition, the
concept of user-defined routines (UDRS) allows the definition of general methods (operations).

Inheritance mechanisms
* Provided using keyword UNDER

Slide 12- 20

User-Defined Types (UDTs) and Complex Structures for

Objects

* UDT syntax:

* CREATE TYPE <type name> AS (<component declarations>) ;

* (Can be used to create a complex type for an attribute

* Array type — to specify collections
* Reference array elements using []

CREATETYPE USA_ADDRE_TYPE AS {

STREET_ADDR ROW (HNUMBER VARCHAR (5],
STREET_MAME VARCHAR (25),
APT_NO VARCHAR (5],
SUITE_NO VARCHAR (5}),

CITY VARCHAR (25),

2P VARCHAR (10)

(a) CREATE TYPE STREET_ADDR_TYPE AS (

NUMBER VARCHAR (5),
STREET NAME VARCHAR (25),
APT_NO VARCHAR (5),
SUITE_NO VARCHAR (5)

5i

CREATE TYPE USA_ADDR_TYPE AS (
STREET_ADDR STREET_ADDR_TYPE,
CITY VARCHAR (25),
ZIP VARCHAR (10)

Ji

CREATE TYPE USA_PHONE_TYPE AS (
PHONE_TYPE VARCHAR (5),
AREA_CODE CHAR (3),
PHONE_NUM CHAR (7)

ki

Figure 12.4a Illustrating some of the object features of

SQL. Using UDTs as types for attributes such as Address and
Phone.

Slide 12- 21

Object Identifiers Using Reference Types

* Reference type
* Create unique object identifiers (OIDs)
* Can specify system-generated object identifiers

e Alternatively can use primary key as OID as in traditional relational model

* Examples:
e REF IS SYSTEM GENERATED
* REF IS <OID ATTRIBUTE> <VALUE GENERATION METHOD> ;

SYSTEM GENERATED
Or

(b) CREATE TYPE PERSON_TYPE AS (DERIVED
NAME VARCHAR (35),
SEX CHAR,
BIRTH_DATE DATE,
PHONES USA_PHONE_TYPE ARRAY [4],
ADDR USA_ADDR_TYPE
INSTANTIABLE indicates that whenever a new PERSON_TYPE object is created, the
NOT FINAL . system will assign it a unique system-generated identifier.

REF IS SYSTEM GENERATED
INSTANCE METHOD AGE() RETURNS INTEGER;
CREATE INSTANCE METHOD AGE() RETURNS INTEGER

FOR PERSON_TYPE

BEGIN

RETURN /* CODE TO CALCULATE A PERSON'S AGE FROM
TODAY'S DATE AND SELF.BIRTH_DATE */

END;

);

Figure 12.4b Illustrating some of the object features of
SQL. Specifying UDT for PERSON_TYPE.

Slide 12- 23

Creating Tables Based on the UDTs

* INSTANTIABLE
* Specify that UDT is instantiable
* The user can then create one or more tables based on the UDT

* If keyword INSTANTIABLE is left out, can use UDT only as attribute data type — not as a basis for a
table of objects

(b) CREATE TYPE PERSON_TYPE AS (

NAME VARCHAR (35),
SEX CHAR,
BIRTH_DATE DATE,
PHONES USA_PHONE_TYPE ARRAY [4],
ADDR USA_ADDR_TYPE
INSTANTIABLE
NOT FINAL

REF IS SYSTEM GENERATED
INSTANCE METHOD AGE() RETURNS INTEGER;
CREATE INSTANCE METHOD AGE() RETURNS INTEGER

FOR PERSON_TYPE

BEGIN

RETURN /* CODE TO CALCULATE A PERSON'S AGE FROM
TODAY'S DATE AND SELF.BIRTH_DATE */

END:

¥

Figure 12.4b Illustrating some of the object features of
SQL. Specifying UDT for PERSON_TYPE.

Slide 12- 24

Encapsulation of Operations

* User-defined type

» Specify methods (or operations) in addition to the attributes

INSTANCE METHOD <NAME> (<ARGUMENT_LIST>) RETURNS
<RETURN_TYPE=,

(b) CREATE TYPE PERSON_TYPE AS (

NAME VARCHAR (35),
SEX CHAR,
BIRTH_DATE DATE,
PHONES USA_PHONE_TYPE ARRAY [4],
ADDR USA_ADDR_TYPE
INSTANTIABLE
NOT FINAL

REF IS SYSTEM GENERATED
INSTANCE METHOD AGE() RETURNS INTEGER;
CREATE INSTANCE METHOD AGE() RETURNS INTEGER

FOR PERSON_TYPE

BEGIN

RETURN /* CODE TO CALCULATE A PERSON'S AGE FROM
TODAY'S DATE AND SELF.BIRTH_DATE */

END:

¥

Figure 12.4b Illustrating some of the object features of
SQL. Specifying UDT for PERSON_TYPE.

Slide 12- 25

Specifying Type Inheritance

* NOT FINAL:
* The keyword NOT FINAL indicates that subtypes can be created for that type

e UNDER
* The keyword UNDER is used to create a subtype

* Type inheritance rules:
» All attributes/operations are inherited
* Order of supertypes in UNDER clause determines inheritance hierarchy
* Instance (object) of a subtype can be used in every context in which a supertype instance used
* Subtype can redefine any function defined in supertype

Slide 12- 28

Specifying Type Inheritance

(b) CREATE TYPE PERSON_TYPE AS (

NAME VARCHAR (35),
SEX CHAR,
BIRTH_DATE DATE,
PHONES USA_PHONE_TYPE ARRAY [4],
ADDR USA_ADDR_TYPE
INSTANTIABLE
NOT FINAL

REF IS SYSTEM GENERATED
INSTANCE METHOD AGE() RETURNS INTEGER;
CREATE INSTANCE METHOD AGE() RETURNS INTEGER

FOR PERSON_TYPE

BEGIN

RETURN /* CODE TO CALCULATE A PERSON'S AGE FROM
TODAY'S DATE AND SELF.BIRTH_DATE */

END;

Y;

Figure 12.4b Illustrating some of the object features of
SQL. Specifying UDT for PERSON_TYPE.

Figure 12.4c
Illustrating some of the
object features of SQL.
Specifying UDTs for
STUDENT_TYPE and
EMPLOYEE_TYPE as two
subtypes of
PERSON_TYPE.

(c) CREATE TYPE GRADE_TYPE AS (

COURSENO CHAR (8),
SEMESTER VARCHAR (8),
YEAR CHAR (4),
GRADE CHAR

¥;

CREATE TYPE STUDENT_TYPE UNDER PERSON_TYPE AS (
MAJOR_CODE CHAR (4),
STUDENT_ID CHAR (12),
DEGREE VARCHAR (5),
TRANSCRIPT GRADE_TYPE ARRAY [100]

INSTANTIABLE
NOT FINAL
INSTANCE METHOD GPA() RETURNS FLOAT;
CREATE INSTANCE METHOD GPA() RETURNS FLOAT
FOR STUDENT_TYPE
BEGIN
RETURN /* CODE TO CALCULATE A STUDENT’S GPA FROM
SELF.TRANSCRIPT */
END;
%
CREATE TYPE EMPLOYEE_TYPE UNDER PERSON_TYPE AS (
JOB_CODE CHAR (4),

SALARY FLOAT,
SSN CHAR (11)
INSTANTIABLE
NOT FINAL

);

CREATE TYPE MANAGER_TYPE UNDER EMPLOYEE_TYPE AS (
DEPT_MANAGED CHAR (20)

INSTANTIABLE

);

Creating Tables based on UDT

* UDT must be INSTANTIABLE

* One or more tables can be created

* Tableinheritance:
* UNDER keyword can also be used to specify supertable/subtable inheritance
* Objects in subtable must be a subset of the objects in the supertable

(d) CREATE TABLE PERSON OF PERSON_TYPE

* Here, a new record that is inserted into a

subtable, say the MANAGER table, is also REF IS PERSON_ID SYSTEM GENERATED;
inserted into its supertables EMPLOYEE and CREATE TABLE EMPLOYEE OF EMPLOYEE_TYPE
PERSON. UNDER PERSON;

* Notice that when a record is inserted in
MANAGER, we must provide values for all its

CREATE TABLE MANAGER OF MANAGER_TYPE

inherited attributes. INSERT, DELETE, and UNDER EMPLOYEE;
UPDATE operations are appropriately CREATE TABLE STUDENT OF STUDENT_TYPE
RIS coted. | UNDER PERSON;
* The ruleis that a tuple in a sub-table must also
istini Y Figure 12.4d Illustrating some of the object

exist in .|ts super tab!e to enforce the set/subset featuras of SOl Creating tables basedioal &
constraint on the objects. of the UDTs, and illustrating table inheritance.

A component attribute of one tuple may be a reference (e) CREATE TYPE COMPANY TYPE AS (

(specified using the keyword COMP_MAME VARCHAR (20),

REF) to a tuple of another (or possibly the same) table. LOCATION VARCHAR (20));

CREATE TYPE EMPLOYMEMT_TYPE AS (
Employee REF (EMPLOYEE_TYPE) SCOPE (EMPLOYEE),
Company REF (COMPANY_TYPE) SCOPE (COMPANY));
CREATE TABLE COMPAMNY OF COMPANY_TYPE (
. . . REF IS COMP_ID SYSTEM GENERATED,
Notice that this is similar to a foreign key, except that the PRIMARY KEY (COMP_NAME)):

system-generated OID value is used rather than the CREATE TABLE EMPLOYMENT OF EMPLOYMENT TYPE:
primary key value.

The keyword SCOPE specifies the name of the table whose
tuples can be referenced by the reference attribute.

Figure 12.4(e) Specifying relationships using REF and i _
SCOPE. Slide 12- 32

Summary of SQL Object Extensions

* UDT to specify complex types
* INSTANTIABLE specifies if UDT can be used to create tables; NOT FINAL specifies if UDT can be inherited by a subtype

* REF for specifying object identity and inter-object references
* Encapsulation of operations in UDT

* Keyword UNDER to specify type inheritance and table inheritance

Slide 12- 36

