
CS 703

Advanced Database Systems

Chapter 12: Object and Object-Relational

Databases Part I

Copyright © 2017 Ramez Elmasri and Shamkant B. Navathe

Introduction

• Weak Points of the Relational Model:

1. Efficiency

• information retrieved by addressing multiple tables (join operation is very slow)

2. Data semantics

• the relational model lacks semantics

– cannot distinguish between different types of relationships (association, aggregation, specialization)

– a column can be either attribute or relationship.

3. Model extension

• relations cannot be used as built-in data types (1-NF prevents nested relations)

Slide 12- 3

Introduction

• Weak Points of the Relational Model:

4. Program interface and impendence mismatch problem

• differences between the database model and the programming language model.

• mismatch in the data types supported by the two systems. More on impedance mismatch (Section 10.1.2)

Slide 12- 3

• Binding for each host programming language that specifies for each attribute type the compatible programming

language types. A different binding is needed for each programming language because different languages have

different data types.

• Another problem occurs because the results of most queries are sets or multisets of tuples (rows), and each

tuple is formed of a sequence of attribute values. In the program, it is often necessary to access the individual

data values within individual tuples for printing or processing. Hence, a binding is needed to map the query

result data structure, which is a table, to an appropriate data structure in the programming language. A

mechanism is needed to loop over the tuples in a query result in order to access a single tuple at a time and to

extract individual values from the tuple. The extracted attribute values are typically copied to appropriate

program variables for further processing by the program.

Or

• Special database programming language is designed that uses the same data model and data types as the

database Model such as PL\SQL or SQL\PSM.

The object data model is quite similar to the data model of the Java programming language, so the impedance mismatch is

greatly reduced when Java is used as the host language for accessing a Java-compatible object database.

• Object databases (ODB)

• Reason for the creation of object-oriented databases is the vast increase in the use of object-oriented
programming languages for developing software applications.

• Meet some of the needs of more complex applications (CAD\CAM, biological and other sciences,
telecommunications, geographic information systems, and multimedia).

• Object-oriented databases have adopted many of the concepts that were developed originally for object-oriented
programming languages.

• Specify:

• Structure of complex objects

• Operations that can be applied to these objects

• These include object identity, object structure and type constructors, encapsulation of operations, and the
definition of methods as part of class declarations, mechanisms for storing objects in a database by making them
persistent, and type and class hierarchies and inheritance.

• Relational DBMS (RDBMS) vendors have also recognized the need for incorporating features that were proposed for
object databases, and newer versions of relational systems have incorporated many of these features.

• This has led to database systems that are characterized as object-relational or ORDBMs.

Slide 12- 3

Introduction

Slide 8- 5

Overview of Object Database
Concepts

Introduction to Object-Oriented Concepts and Features

• Origins in OOPL

• An object typically has two components: state (value) and behavior (operations). It can have a complex data structure as well as
specific operations defined by the programmer.

• Objects in an OOPL exist only during program execution; therefore, they are called transient objects. An OO database can extend
the existence of objects so that they are stored permanently in a database, and hence the objects become persistent objects that
exist beyond program termination and can be retrieved later and shared by other programs.

• The internal structure of an object in OOPLs includes the specification of instance variables, which hold the values that define the
internal state of the object. An instance variable is similar to the concept of an attribute in the relational model, except that
instance variables may be encapsulated within the object and thus are not necessarily visible to external users. Instance variables
may also be of arbitrarily complex data types.

• Object-oriented systems allow definition of the operations or functions (behavior) that can be applied to objects of a particular
type.

– the object behavior …

• methods (operations) that can be executed to

– create/destroy an object

– update an object state

– retrieve object state

– compute new values based on object state

• the names and parameters of methods

– define the object interface

Slide 12- 5

Introduction to Object-Oriented Concepts and Features

• Inheritance

o Permits specification of new types or classes that inherit much of their structure and/or operations from previously defined
types or classes. This makes it easier to develop the data types of a system incrementally and to reuse existing type definitions
when creating new types of objects.

• Operator overloading (polymorphism)

o Operation’s ability to be applied to different types of objects

o Operation name may refer to several distinct implementations

o For example, an operation to calculate the area of a geometric object may differ in its method (implementation), depending
on whether the object is of type triangle, circle, or rectangle.

• The concept of encapsulation is one of the main characteristics of OO languages and systems. It is also related to the concepts of
abstract data types and information hiding in programming languages.

• Define behavior of a class of object based on operations that can be externally applied

• External users only aware of interface of the operations

• Can divide structure of object into visible and hidden attributes

Slide 12- 5

Overview of Object Database Concepts

Slide 12- 5

--The object identifier (OID)

• Is a unique system-wide identifier. Every object must have an object identifier.

• Object has Unique identity

• Implemented via a unique, system-generated object identifier (OID)

• Not visible to the user but is used internally by the system to identify each object uniquely and to create and
manage interobject references.

• Immutable (unchangeable for the same object and is not assigned to other objects).

• OIDs does not depend on attribute values.

• Some early OO data models required that everything—from a simple value to a complex object—was represented as
an object; hence, every basic value, such as an integer, string, or Boolean value, has an OID. Although useful as a
theoretical model, this is not very practical, since it leads to the generation of too many OIDs.

• Hence, most ODBs allow for the representation of both objects and literals (or values). Every object must have an
immutable OID, whereas a literal value has no OID and its value just stands for itself. Thus, a literal value is typically
stored within an object and cannot be referenced from other objects.

• In many systems, complex structured literal values can also be created without having a corresponding OID if needed.

RDB: each relation must have a primary key
attribute whose value identifies each tuple
uniquely. If the value of the primary key is
changed, the tuple will have a new identity,

Objects versus Literals

• Most OO database systems allow for the representation of both objects and literals (simple or complex values)

• Objects and literals are the basic building blocks of the object model. The main difference between the two is that an
object has both an object identifier and a state (or current value), whereas a literal has a value (state) but no object
identifier.

• In either case, the value can have a complex structure.

Slide 12- 6

Complex Type Structures for Objects and Literals

• Structure of arbitrary complexity

• Contain all necessary information that describes object or literal

• A complex type may be constructed from other types by nesting of type constructors. The three most basic constructors are
atom, struct (or tuple), and collection.

1. One type constructor has been called the atom constructor. This includes the basic built-in data types of the object model,
which are similar to the basic types in many programming languages: integers, strings, floating-point numbers, Booleans,
and so on. These basic data types are called single valued or atomic types, since each value of the type is considered an
atomic (indivisible) single value.

2. A second type constructor is referred to as the struct (or tuple) constructor. This can create standard structured types, such
as the tuples (record types) in the basic relational model. A structured type is made up of several components and is also
sometimes referred to as a compound or composite type.

For example, two different structured types that can be created are:

struct Name<FirstName: string, MiddleInitial: char, LastName: string>

struct CollegeDegree<Major: string, Degree: string, Year: date>.

Slide 12- 7

RDB: Information about a complex data structure is
often scattered over many relations or records,
leading to loss of direct correspondence between a
real-world object and its database representation.

RDB: the type constructors atom and struct are the
only ones available in the original (basic) relational
model.
.

Complex Type Structures for Objects and Literals

• Collection types:

• set constructor will create objects or literals that are a set of distinct elements {i1, i2,… ,in}, all of the same type.

• The bag constructor (also called a multiset) is similar to a set except that the elements in a bag need not be distinct.

• The list constructor will create an ordered list [i1, i2, … , in] of OIDs or values of the same type. A list is similar to a
bag except that the elements in a list are ordered, and hence we can refer to the first, second, or jth element.

• The array constructor creates a single-dimensional array of elements of the same type. The main difference
between array and list is that a list can have an arbitrary number of elements whereas an array typically has a
maximum size.

• Finally, the dictionary constructor creates a collection of key-value pairs (K, V), where the value of a key K can be
used to retrieve the corresponding value V.

Slide 12- 8

3. To create complex nested type structures in the object model, the collection type constructors are needed.

Collection (or multivalued) type constructors include the set(T), list(T), bag(T), array(T), and dictionary(K,T) type
constructors. These allow part of an object or literal value to include a collection of other objects or values when needed.
These constructors are also considered to be type generators because many different types can be created. For example,
set(string), set(integer), and set(Employee) are three different types that can be created from the set type constructor. All
the elements in a particular collection value must be of the same type. For example, all values in a collection of type
set(string) must be string values.

Encapsulation of Object Attributes

• Divide the structure of an object into visible and hidden attributes (instance variables).

• Visible attributes can be seen by and are directly accessible to the database users and programmers via the query
language.

• The hidden attributes of an object are completely encapsulated and can be accessed only through predefined operations.

• Most ODMSs employ high-level query languages for accessing visible attributes

• The term class is often used to refer to a type definition, along with the definitions of the operations for that type.

Slide 12- 12

RDB: Attributes are visible to users and
applications according to the predefined external
view.

Encapsulation of Operations

• The concept of encapsulation is applied to database objects in ODBs by

defining the behavior of a type of object based on the operations that can be

Externally applied to objects of that type.

Typical operations include:

• Constructor operation

• Used to create a new object

• Destructor operation

• Used to destroy (delete) an object

• Modifier operations

• Modify the state of an object

• Retrieve operation

• Retrieve parts of the object state

• Dot notation to apply operations to object

• An operation is typically applied to an object by using the dot notation. For example, if d is a reference to a
DEPARTMENT object, we can invoke an operation such as no_of_emps by writing d.no_of_emps. Similarly, by
writing d.destroy_dept, the object referenced by d is destroyed (deleted).

• The external users of the object are only made aware of the interface of the operations, which defines the name and
arguments (parameters) of each operation. The implementation is hidden from the external users.

Slide 12- 12

RDB: Operations are generic and visible to users
and applications. The operations for selecting,

inserting, deleting, and modifying tuples are

generic and may be applied to any relation in

the database. The relation and its attributes

are visible to users and to external programs

that access the relation by using these
operations.

Persistence of Objects

• Transient objects: Exist in executing program. Disappear once program
terminates

• Persistent objects: Stored in database, persist after program
termination

• The typical mechanisms for making an object persistent are naming
and reachability.

• Naming mechanism: object assigned a unique name in object base,
user finds object by its name through which users and applications
can start their database access

• Reachability: object referenced from other persistent objects,
object located through references. An object B is said to be
reachable from an object A if a sequence of references in the
database lead from object A to object B.

Slide 12- 13

RDB: all objects are assumed to be persistent.
Hence, when a table such as EMPLOYEE is created
in a relational database, it represents both the type
declaration for EMPLOYEE and a persistent set
of all EMPLOYEE records (tuples).

• In the OO approach, a class declaration of EMPLOYEE specifies only the type and
operations for a class of objects. The user must separately define a persistent
object of type set(EMPLOYEE) whose value is the collection of references (OIDs) to
all persistent EMPLOYEE objects, if this is desired

• The ODMG ODL standard gives the schema designer the option of naming an
extent as part of class definition.

Type (Class) Hierarchies and Inheritance (cont’d.)

• Inheritance

• Definition of new types based on other predefined types

• Leads to type (or class) hierarchy

• Subtype

• Useful when creating a new type that is similar but not identical to an already defined type

• Subtype inherits functions

• Additional (local or specific) functions in subtype

Slide 12- 16

Other Object-Oriented Concepts

• Polymorphism of operations

• Also known as operator overloading

• Allows same operator name or symbol to be bound to two or more different implementations

• Type of objects determines which operator is applied

• Multiple inheritance

• Subtype inherits functions (attributes and operations) of more than one supertype

• Example: subtype ENGINEERING_MANAGER that is a subtype of both MANAGER and ENGINEER.

Slide 12- 18

Summary of Object Database Concepts

Slide 12- 19

Slide 8- 18

Object-Relational Features:

Object DB Extensions to

SQL

Object-Relational Features: Object DB Extensions to SQL

• Type constructors (generators)

• Specify complex types using user defined types UDT such as row type, array types, set, list and bag.

• Mechanism for specifying object identity using reference type operator.

• Encapsulation of operations

• Provided through user-defined types (UDTs) that may include operations as part of their declaration. In addition, the
concept of user-defined routines (UDRs) allows the definition of general methods (operations).

• Inheritance mechanisms

• Provided using keyword UNDER

Slide 12- 20

User-Defined Types (UDTs) and Complex Structures for
Objects

Slide 12- 21

• UDT syntax:

• CREATE TYPE <type name> AS (<component declarations>);

• Can be used to create a complex type for an attribute

• Array type – to specify collections

• Reference array elements using []

Figure 12.4a Illustrating some of the object features of
SQL. Using UDTs as types for attributes such as Address and
Phone.

Object Identifiers Using Reference Types

• Reference type

• Create unique object identifiers (OIDs)

• Can specify system-generated object identifiers

• Alternatively can use primary key as OID as in traditional relational model

• Examples:

• REF IS SYSTEM GENERATED

• REF IS <OID_ATTRIBUTE> <VALUE_GENERATION_METHOD> ;

Slide 12- 23

SYSTEM GENERATED

Or

DERIVED

Figure 12.4b Illustrating some of the object features of
SQL. Specifying UDT for PERSON_TYPE.

indicates that whenever a new PERSON_TYPE object is created, the

system will assign it a unique system-generated identifier.

Creating Tables Based on the UDTs

• INSTANTIABLE

• Specify that UDT is instantiable

• The user can then create one or more tables based on the UDT

• If keyword INSTANTIABLE is left out, can use UDT only as attribute data type – not as a basis for a
table of objects

Slide 12- 24

Figure 12.4b Illustrating some of the object features of
SQL. Specifying UDT for PERSON_TYPE.

Encapsulation of Operations

• User-defined type

• Specify methods (or operations) in addition to the attributes

Slide 12- 25

Figure 12.4b Illustrating some of the object features of
SQL. Specifying UDT for PERSON_TYPE.

Specifying Type Inheritance

• NOT FINAL:

• The keyword NOT FINAL indicates that subtypes can be created for that type

• UNDER

• The keyword UNDER is used to create a subtype

Slide 12- 28

• Type inheritance rules:

• All attributes/operations are inherited

• Order of supertypes in UNDER clause determines inheritance hierarchy

• Instance (object) of a subtype can be used in every context in which a supertype instance used

• Subtype can redefine any function defined in supertype

Specifying Type Inheritance

Slide 12- 31

Figure 12.4c
Illustrating some of the
object features of SQL.
Specifying UDTs for
STUDENT_TYPE and
EMPLOYEE_TYPE as two
subtypes of
PERSON_TYPE.

Figure 12.4b Illustrating some of the object features of
SQL. Specifying UDT for PERSON_TYPE.

Creating Tables based on UDT
• UDT must be INSTANTIABLE

• One or more tables can be created

• Table inheritance:

• UNDER keyword can also be used to specify supertable/subtable inheritance

• Objects in subtable must be a subset of the objects in the supertable

Slide 12- 32

Figure 12.4d Illustrating some of the object
features of SQL. Creating tables based on some
of the UDTs, and illustrating table inheritance.

• Here, a new record that is inserted into a
subtable, say the MANAGER table, is also
inserted into its supertables EMPLOYEE and
PERSON.

• Notice that when a record is inserted in
MANAGER, we must provide values for all its
inherited attributes. INSERT, DELETE, and
UPDATE operations are appropriately
propagated.

• The rule is that a tuple in a sub-table must also
exist in its super-table to enforce the set/subset
constraint on the objects.

Figure 12.4(e) Specifying relationships using REF and

SCOPE.

A component attribute of one tuple may be a reference
(specified using the keyword
REF) to a tuple of another (or possibly the same) table.

The keyword SCOPE specifies the name of the table whose
tuples can be referenced by the reference attribute.

Notice that this is similar to a foreign key, except that the
system-generated OID value is used rather than the
primary key value.

Summary of SQL Object Extensions

• UDT to specify complex types

• INSTANTIABLE specifies if UDT can be used to create tables; NOT FINAL specifies if UDT can be inherited by a subtype

• REF for specifying object identity and inter-object references

• Encapsulation of operations in UDT

• Keyword UNDER to specify type inheritance and table inheritance

Slide 12- 36

